Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.2.0rc1.tar.gz (20.2 MB view details)

Uploaded Source

Built Distributions

numpy-2.2.0rc1-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.2.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.2.0rc1-cp313-cp313t-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.13t Windows x86-64

numpy-2.2.0rc1-cp313-cp313t-win32.whl (6.3 MB view details)

Uploaded CPython 3.13t Windows x86

numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl (17.8 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ x86-64

numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.2.0rc1-cp313-cp313t-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.2.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.2.0rc1-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.2.0rc1-cp313-cp313-win32.whl (6.3 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.2.0rc1-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.2.0rc1-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.2.0rc1-cp313-cp313-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.2.0rc1-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.2.0rc1-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.2.0rc1-cp312-cp312-win32.whl (6.3 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.2.0rc1-cp312-cp312-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.2.0rc1-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.2.0rc1-cp312-cp312-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.2.0rc1-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numpy-2.2.0rc1-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.2.0rc1-cp311-cp311-win32.whl (6.6 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.2.0rc1-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.2.0rc1-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.2.0rc1-cp311-cp311-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.2.0rc1-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.2.0rc1-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.2.0rc1-cp310-cp310-win32.whl (6.6 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl (15.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.2.0rc1-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.2.0rc1-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.2.0rc1-cp310-cp310-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.2.0rc1-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.2.0rc1.tar.gz.

File metadata

  • Download URL: numpy-2.2.0rc1.tar.gz
  • Upload date:
  • Size: 20.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.2.0rc1.tar.gz
Algorithm Hash digest
SHA256 d3c343e027351fbb3f7ddb0024857cd10837d6a77b40b33e39ff6706ed7ceec1
MD5 4836fdb3009f043287f011b5f6d18208
BLAKE2b-256 d1eb9c688381b252f711cadf3ec38b3eceb0b946ff5a161a3adc520c886fed43

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8d7de626a5e554b074890258e63d0b06eff2af48da034fe5ffef8743578b1e0b
MD5 67390891e461b1983aadab51bc96a78b
BLAKE2b-256 4f147d096686c4513cc2a658b5c17d419deca49168a4382ed0a744e50fad1a83

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d12bf735dc4e7dfa8c66b2fd47547bcf91c9996585324959e2c5a2f5360e1c8f
MD5 cb0482e5c60d706b9b0e9ce8dac9d8a6
BLAKE2b-256 2ffa3ba7a7b8930ff7a74d247137acd88ee6cde1956700657fcdd64f7ec6c810

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 d8d13dd7b6f1f14c43ff68e81c8edcb035f572d87507b5f629e78a7d8c61e9f4
MD5 85acaaaa495d92bc52631a6a0654fd8e
BLAKE2b-256 d68f7cad86c8b569cf386652250806f26d116ae0dd1b35069a786742e374c961

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d4bbc95647ce01252827d4c6ea5de42460ea66d75831333f2b92f088b60e1b43
MD5 fce62da0e31ae09237cf241c77e54498
BLAKE2b-256 e3f30efffff31f3551198352f54573ec0c396d0a8559bfa663ffb3e565e04649

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313t-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 67d2f5c34f231e7ed59189c20f8b7472b77cff85277bcd80537417eee61977db
MD5 290c12deaff6df2e54569563a8f1316a
BLAKE2b-256 843dee15c832d604c2e9dcf3b1a580e07d1f8abf47e4723ebd9b81bcdba95782

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.2.0rc1-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 64b994b9054ab051d137fff61bb6244aa1e7a80defa42c507355b562cc44a561
MD5 af48c02a9130ad93e93a55ebf87b5c78
BLAKE2b-256 509508ed69b6e522ad0ce79929c040d924f8ff70ae9be8cf09bbd414a09f337d

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ddb4720b057048d7ac3ce973256e89e1e7481f71b5a214a0a3be936aeda014e7
MD5 dcf499ab9d350e3414368a106c714256
BLAKE2b-256 3d942827a81f3d3bb61dc0736974ae74604f85cba7620585340fa7cc01a337fe

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 598b88170e0f361d2f6d8cc9ec18d798af07a2e9b30b95ba2d76415b7c3cc433
MD5 1d29f0a150c39b500b4f0b1e4c625e9b
BLAKE2b-256 e4fbebb55867191ab0829e1050b2207884d192f9a28cf24f2c73f3dc89bcb9df

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c43d7beaab6509f1467175cc7cfdcc048581b91ba55e149cc39af758209b166
MD5 8889da4b211ca3edba34518306115a81
BLAKE2b-256 04cd41e2800ab12f0629d69f71764af7947f0125685d4d1e3aae8f7d809b1e90

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0b742731c2721445a03e469f286c9ddf15dd80e52622ea4487ddc10a7869fe9
MD5 f10882cf7238a03896903b337bce2b05
BLAKE2b-256 981c0b285e02db96da8009602df92a82d7e8af7118025fb20c93c0340ec81737

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 9c3bdfe13209bf4f81aea5f8dd2843ab17c9a9273133d491c220636bfd51432d
MD5 455ef245987926bb966565de0f68d00f
BLAKE2b-256 61541f5dea1f41846d24148740c2117bb340504335679397fe95f3a0c0c93d70

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f2b59a4e85367107dced5b3c7374a5e828ddb7c5c4e1d98176d09b177e23edd0
MD5 9a5e6fb707b1bc448d6f5eb226757581
BLAKE2b-256 7c7c31ffc5ef341aeec7f5cf04e33cde22f24c2aaf8db4646c05a845d92988db

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 def9537da892cd995f81646df94021fbf0dce690d518daaabc0902bc8ce42cd9
MD5 5195eeac3d355592ec97db04cea7fb43
BLAKE2b-256 a941525f483bb3013f9172c7ced32354150e9c194bff1934dbb6d917e01a8461

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3f0d900e60e783fa9965729fa2a17021add82d769bf298cdb407abcbbf316e28
MD5 4dff6567391c376daf27f2a144a4142d
BLAKE2b-256 c76e16a096fe08e4a9677fbc1968f325b438ab6367a91d6be32d4ef0c4aa13db

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.0rc1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5776d7b395dcf180bc807a9374aca05b6569e5e5e4bdcbf112aa452a471405e0
MD5 f57eb3377cf0acf5ce165034e5d3d061
BLAKE2b-256 b2fee60dd67fe68b0e4d7106e9e8ef2fbc7fbcbe2f06ea3c0955d301e2bdd100

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.2.0rc1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 1b18bf71975be1728042ba232d7406ae2f6fed8431684851fda4b909ab6e20ce
MD5 fc33a9a4c895b2463672d01e75431a8f
BLAKE2b-256 f03ae287e51a6a9a6b4beabb8de3c80ef4dfda015c3ba7793ad017099c0fa91a

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 61a04f035bd4f87d6c0592eaa06061f9f16bf0e11d546e3b9252ccf83f0917a6
MD5 902e1f704a187a85f02f71877ed69baf
BLAKE2b-256 acbd0ceda26cce496a5fedc5ef5e60f08934251ab30403bdc530ba43386443fd

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 fd3981aa01428eef69fe5ff2e97e3ca8e65e677ffacc7c447e164ae2aaf521fb
MD5 8b739c89e3c67210467ac0855623da47
BLAKE2b-256 8d2858bab1815ae14b622dfdb7d9a0a1947ab310b5493d2c942609f97b8a1666

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e515a7d5f5e1b32eb9e761de4f0327aceee27ec07cc655d26424a5e86d3c8d0d
MD5 f8975385402dfa988efe0121adcb3b83
BLAKE2b-256 ac3fb11b0e0fca5ee43f65b3c49ec8d6b7ad5dc53b79cee4637d845d1f6246dc

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 38405f26748e7ed4c7b31e5f8c24f385e1daf4954628f6143f5a09047e220ca9
MD5 b38fd53f8f162a833b89e32b52d6f0b5
BLAKE2b-256 653aa0a1d36cbce477b0e3f31c440ca94b90eb294d1f13b6d619b5c7f05ba597

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 ecc601c633667ea5eed0c16f987e4c715ee951d0bfa3658f76b690e8dceaddfd
MD5 57bb0a9d61444162269751eb861bef75
BLAKE2b-256 33c1d6b3345b92a9c5e66baa74fd44e9ace26014bf0430d7981785c2ab15c38e

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 dc532dd1c767864614f383cad63edf864f78df3533b6444d94af099583c8fb39
MD5 1f22dc1bc3dd3bf645a35a8c58e07ac3
BLAKE2b-256 52f45f14300bc3086b741b46039e0f3b96a8b8119fed151cca988ea49c1a0964

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4332ddb4f40e85f6cdf1594279b35e847a20054c3269f7f2e848b6075cb8f4b3
MD5 dffe0e20843d5e331358206b535c47f7
BLAKE2b-256 5e65c60b1ef433983e842e3e27dcbbcd4870b707c5e86ce5e478ba8d4811eddc

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c2ef440fc343cc11e8e1591bf77b0f4f21b0684feabdf7b3ec3d768b8cce7a05
MD5 53955ed28cb43f004ccd9f2f1e07b0d4
BLAKE2b-256 a9199bfe5fa23011eff066c8edc9d7e19fc80814b6c42432c6b0ed71fc4e287d

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.0rc1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.2.0rc1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a87c1a4d808de26157440153bb9c51d7dc4778c6cd730026406298b75fa5c2df
MD5 c8ed06acb7e1b885081e682a391524d8
BLAKE2b-256 95544c14a68a7599993a331a78255934bfb5aecdbc1ced03dd11d4586a685576

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.2.0rc1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.2.0rc1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 dc86f8502db8dfbe3474a34395e453849d03f0717227f7bda57a235cbbee3575
MD5 03577c58315ae4b28c3111be0af0c18a
BLAKE2b-256 779c7f823c602f6c4a0199bb903cb8384df372189b2897f03b6b7d5e81399a72

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0b6cb83ab76b101b87211ab6227e010789adf4a98ee4af07a2480d1d2f61d195
MD5 1a5aac9894d1959e1cbbcf58e3aa98d1
BLAKE2b-256 e22c0c139c6dbccc08c791fb34dc09c0a8b35261ec5d0123f760338428f45f71

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5d7a819d4d31bf9998c907105d97a082919b659ff8d44cef2c4f78d0ac16af47
MD5 8c3c80295b92ae839fcb1fc2ab2edf0e
BLAKE2b-256 d784cb1ddd2f7981a5d13cebe83212c32ee8ccbf2cf122821785a236288b4352

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7925618745531971be54a87e0b85dfe83c69dac9dfd8e46c8aaae520af05792b
MD5 a4f14055b4cfafab7035f35e61c6cebb
BLAKE2b-256 101df414ee0fb93813bba70d4b8c126dd687bf5389437a6318d7a332756433d0

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d0db426baa0d9547d9ac3ea08110e9bba400fab7a036235d9baddf61fd931af8
MD5 cbe9b6d14530bdfb75ef61f4328f6b9e
BLAKE2b-256 036376895861fe8c2da5cd9396e9046ed4257b9a887d3c8cfdc90407f34e0b74

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 a783f561c34be98eb25f8cce029b63434d2dfe79702a1d53e9a0fd63c0391dc8
MD5 1a00dd2343f8ec48350b39f72e2c4fa1
BLAKE2b-256 ec1599b9d5a853ea6d82b16077d84cd341649f423dffab8623bea371b0be4af9

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c940b9623e29db06b7d0d3c93c560d42bbd73a76f6d27c41d3fd09c0a15f7773
MD5 6c58bba6f453ad22a651f6f0f6416899
BLAKE2b-256 00508227ba7962a332e18cbacc45492f846cfb73f303ac8e6ca0ef5ce662caa2

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aed72fe759ada921342b4a8ae0893cc7778b07d2f36a78445c70d5ea633c3b25
MD5 e15a1756fbe98aa61cb8d98de1d516fc
BLAKE2b-256 b953f1ba1c4660e4c55a1633a8be2bb9741ea7f03e3837ab78fa2e3a24e9ec62

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f721298f4c39b4619b16ba0d341ff5e043d4123dfb796bd84835538bf8abad2b
MD5 6e4ec4f92f8b0768d679419360098a89
BLAKE2b-256 3b5863fa9783c27495c10b80c19ed3d0ac70eadebfcc67d9ff8a8157a2b7eea2

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.0rc1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.2.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 27f2593fe479dff6f4398563ca2fbf7a416fd8d3a8ad7a35fecbc8ba959000ab
MD5 472e5f997dc437b8115ba4ef70a6a266
BLAKE2b-256 e5a88228e370604cd36c48f2e740e4539f9063afb882962212e2f483c990170c

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.2.0rc1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.2.0rc1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 7bd86cdae85da5fa8763fbe9acfdb4748e1f10bef5e6524bffdfdd2b21bfd56f
MD5 da24dd620b6509740a1d8aebe4d1306c
BLAKE2b-256 2f554ac22f7e9a8326a26350ffaebc163226a72ae50abd318295901b1bf35905

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 37e6413ed8f66df534631058771ca362939e243da725b5e8537d8c64b664e9b2
MD5 244dcedc05e96c843853738bc2d37bdb
BLAKE2b-256 4d04a416bef6628dd6e51964c17472f4379239113c8ef0e6694c3c58b616b8e0

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ffaa01305af250d733d9940c694d206a0c7d1ea2bd5a01bcb5ff7e48c3e6adac
MD5 45456522fc3996937f1b1ad8bd7f85b2
BLAKE2b-256 cd0f2baece00aad41531161f433660ba646af0a592b2c6cec4ddc90281360c7c

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94251286fd3cec5552f217030af4cae68f7a1db4f1791765e597b6d9c0a7647a
MD5 67e3336cdcdcf72cd07978a465e61ebd
BLAKE2b-256 5e930bedf54a62c178cdf3806bcc530d397fff7b1cac9814e88018c9e4669b0c

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 042b6a87c48307955049b338981ff9278fa5e7ff3166bbd0d3294f40726d22d5
MD5 cd034c5179ee4cc5669ae36be0deb6ab
BLAKE2b-256 62f5aa1aa6fa7c6ea637d1254d62a9496f71eb8136b274f7f876a042caa866aa

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 8fb79fe9bfefb2b43f701090f70413fb535f10bfdfab1981b7c02bd406cc39dd
MD5 50aedb2a570a7867e860d98eb816bec4
BLAKE2b-256 13736e4b8d3cfacc02cbd6c89eeab84755d52db11146b0d01802cd2fc0b8fd4a

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3e80348e6d187573dc2bb6b1d862fc32353db371ae063d25b2199f65adc96ff1
MD5 a04fe8ac96a5226686ec4190db8511d6
BLAKE2b-256 be15577867ea91c98952a98b646145115f958dfd969fc5953f11eee75bbb6de8

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8815f7e6d48dbcf4f14704d79b90c8fee1a68a42886d42e9c8209092e684bd99
MD5 aa6c629290d8b05b44fbbf805fb39dbe
BLAKE2b-256 f3735042d4854549ae5674df39b5717ddda2770de51b7a4afd68f34de671c84e

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61915861927b8e20223b7ccbe40ebf3f52220c0fca43be8423087348c7c00418
MD5 a7a8cf5fa2e3d4bd0131ad48c0215f50
BLAKE2b-256 a69248ae7dc65269aaa846556367618264a0d9c78fd3b523aebd925a39c0ceef

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.0rc1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.2.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7a3261b3b7d1403a65112dbad568eee7de596cebd0267e27e7daaa9e08dd396a
MD5 d679ad13f3892325fd4542931ee74852
BLAKE2b-256 7c72613a670d76ab2610552f642e6495c262f79b9c7dfe2dd1d9c500d1c80ba4

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.2.0rc1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.2.0rc1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e2d4b5a37cf5df43ffdabe0ebea150d5ec0a1796ad7122b3a780f1ab646708c8
MD5 1c34c86b0abaa5d2a75677044a7fca07
BLAKE2b-256 ef5861255efd492ed55fcdaa6480202fa36107188834c747fa035fb6b3710899

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2f7861ff2b862e2536f2256acf5dcf1909e927a5f5e940dfd488eecd178a96b6
MD5 450e5e05bdc5551c0a4df2a8d7f09925
BLAKE2b-256 a820edd683398f2cf2d36a551d9c590c8ea0fd6f4c02834007d79404bf128ef0

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5ac124ab756ad56a14cdfcdc69cc220befbfb1162fdf3ca4f6eb1a0ace634c56
MD5 5a40726db153ca1984598323cc59eb9b
BLAKE2b-256 fba66760246a5f6b68b746cee17212f3f6b3f124d86ed4d316769fbd2d4176ad

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c335bd4e3395b8209a011b97e5f9876092fb2dc283933d39620a30c1fa82dfab
MD5 cb768ee568bed2e4f55d47f43c655bc2
BLAKE2b-256 5383aaee7418eb494f544bc5d2f75cb8fd82336804f6c71ea82d439e224b7efe

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a25595d5951ad46bec827dfee09328b8da041fc3f7f13f63880274ed4ec215e
MD5 899d1f24d8e5570695a024908d100174
BLAKE2b-256 b6b2243ee773e6fc660b1540b75a8326aa8679836616af0b684b819923cc16ff

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 44d55304a7397d6e89707af99ea8e980a101a7ff01dd768aaaca16b2312c799b
MD5 8710578b7f4ceef7f73b6d234ad3a82a
BLAKE2b-256 930de467dab6523a659ad734781c13a73a24bfc7f67a1c2b00ee4e8f50c51387

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 72fa15a5f801faf598e6633a6efcb5661085f509f8f6631a0c2c86be06631b78
MD5 d4f8048977139cb229875c201f605369
BLAKE2b-256 89b421d9830b8012b7737c0b0392fede19b30f4ee707c9c236ff1c5f8d0b429c

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c3cd769a38a363fe21077ad137ee43be639464e5f257821a4cc4d4e2016deea
MD5 e69c45cf5ea08fdf2a5527190a7d6549
BLAKE2b-256 1e2a2d5ed214bc17bd4a7ef5580e4672ad3373a06760149f84828ebc41f1febd

See more details on using hashes here.

File details

Details for the file numpy-2.2.0rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 acd4f4e9f8c3c04c9a695333d4f475ec2f7a577342b469b411f7ffb2a2888fdc
MD5 83746dfc1b7774a6677a69c705b83afe
BLAKE2b-256 5a999719b5a0782f16f5a242bed50e2a513b287f9eeb439eb0f119d5e5a2a67d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page