Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

This version

2.2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.2.0.tar.gz (20.2 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPyWindows x86-64

numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPymacOS 14.0+ x86-64

numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded PyPymacOS 10.15+ x86-64

numpy-2.2.0-cp313-cp313t-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.13tWindows x86-64

numpy-2.2.0-cp313-cp313t-win32.whl (6.3 MB view details)

Uploaded CPython 3.13tWindows x86

numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ x86-64

numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ARM64

numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13tmacOS 14.0+ x86-64

numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13tmacOS 14.0+ ARM64

numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13tmacOS 10.13+ x86-64

numpy-2.2.0-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13Windows x86-64

numpy-2.2.0-cp313-cp313-win32.whl (6.3 MB view details)

Uploaded CPython 3.13Windows x86

numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13macOS 14.0+ x86-64

numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

numpy-2.2.0-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12Windows x86-64

numpy-2.2.0-cp312-cp312-win32.whl (6.3 MB view details)

Uploaded CPython 3.12Windows x86

numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.12macOS 14.0+ x86-64

numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

numpy-2.2.0-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11Windows x86-64

numpy-2.2.0-cp311-cp311-win32.whl (6.6 MB view details)

Uploaded CPython 3.11Windows x86

numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11macOS 14.0+ x86-64

numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

numpy-2.2.0-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10Windows x86-64

numpy-2.2.0-cp310-cp310-win32.whl (6.6 MB view details)

Uploaded CPython 3.10Windows x86

numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl (15.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10macOS 14.0+ x86-64

numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file numpy-2.2.0.tar.gz.

File metadata

  • Download URL: numpy-2.2.0.tar.gz
  • Upload date:
  • Size: 20.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0.tar.gz
Algorithm Hash digest
SHA256 140dd80ff8981a583a60980be1a655068f8adebf7a45a06a6858c873fcdcd4a0
MD5 81a58d5fd26fe983162dc3cea2989b7a
BLAKE2b-256 471b1d565e0f6e156e1522ab564176b8b29d71e13d8caf003a08768df3d5cec5

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 df12a1f99b99f569a7c2ae59aa2d31724e8d835fc7f33e14f4792e3071d11221
MD5 c138d726fee19ec6ba85eaa2ba9a3390
BLAKE2b-256 6717209bda34fc83f3436834392f44643e66dcf3c77465f232102e7f1c7d8eae

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a50aeff71d0f97b6450d33940c7181b08be1441c6c193e678211bff11aa725e7
MD5 d76c5769a3fdfb9e25b3c1a951bd021f
BLAKE2b-256 c95a378954132c192fafa6c3d5c160092a427c7562e5bda0cc6ad9cc37008a7a

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 b6207dc8fb3c8cb5668e885cef9ec7f70189bec4e276f0ff70d5aa078d32c88e
MD5 fc89986fda7ba19c7c50712f1fc1e342
BLAKE2b-256 193e2b20599e7ead7ae1b89a77bb34f88c5ec12e43fbb320576ed646388d2cb7

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e12c6c1ce84628c52d6367863773f7c8c8241be554e8b79686e91a43f1733773
MD5 9fbe2640c73e4f391019db5af6e854f5
BLAKE2b-256 f3186d4e1274f221073058b621f4df8050958b7564b24b4fa25be9f1b7639274

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.0-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 d35717333b39d1b6bb8433fa758a55f1081543de527171543a2b710551d40881
MD5 eb9ea9f8fba78e7ae5b1415de1ee5c2c
BLAKE2b-256 cee1e0d06ec34036c92b43aef206efe99a5f5f04e12c776eab82a36e00c40afc

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.2.0-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 30bf971c12e4365153afb31fc73f441d4da157153f3400b82db32d04de1e4066
MD5 1f566cfe4880ca30a591a828634da429
BLAKE2b-256 d4dc09a4e5819a9782a213c0eb4eecacdc1cd75ad8dac99279b04cfccb7eeb0a

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4bddbaa30d78c86329b26bd6aaaea06b1e47444da99eddac7bf1e2fab717bd72
MD5 8c199d25bd806f737950428232b0dfa5
BLAKE2b-256 65d9dddf398b2b6c5d750892a207a469c2854a8db0f033edaf72103af8cf05aa

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a55dc7a7f0b6198b07ec0cd445fbb98b05234e8b00c5ac4874a63372ba98d4ab
MD5 9789193a075e8d494851fe7955a23af7
BLAKE2b-256 0494b419e7a76bf21a00fcb03c613583f10e389fdc8dfe420412ff5710c8ad3d

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 440cfb3db4c5029775803794f8638fbdbf71ec702caf32735f53b008e1eaece3
MD5 a6bc7090a4e2b1e9deabd0671c691129
BLAKE2b-256 698fa1df7bd02d434ab82539517d1b98028985700cfc4300bc5496fb140ca648

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e500aba968a48e9019e42c0c199b7ec0696a97fa69037bea163b55398e390529
MD5 b70ea00b40fb7d1b5d84868d8a073afb
BLAKE2b-256 769934d20e50b3d894bb16b5374bfbee399ab8ff3a33bf1e1f0b8acfe7bbd70d

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 6ab153263a7c5ccaf6dfe7e53447b74f77789f28ecb278c3b5d49db7ece10d6d
MD5 3d76dfe8c2e26dc42b97fdf086ce1fa5
BLAKE2b-256 2f47ea804ae525832c8d05ed85b560dfd242d34e4bb0962bc269ccaa720fb934

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 b0b227dcff8cdc3efbce66d4e50891f04d0a387cce282fe1e66199146a6a8fca
MD5 71a7ee75208a633a8c36d4ed5b551c33
BLAKE2b-256 176c4195dd0e1c41c55f466d516e17e9e28510f32af76d23061ea3da67438e3c

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f0dd071b95bbca244f4cb7f70b77d2ff3aaaba7fa16dc41f58d14854a6204e6c
MD5 8e9b0579f2e22f38f57399ab18d6e651
BLAKE2b-256 b434162ae0c5d2536ea4be98c813b5161c980f0443cd5765fde16ddfe3450140

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7832f9e8eb00be32f15fdfb9a981d6955ea9adc8574c521d48710171b6c55e95
MD5 e6fd32fb42fd89c7659e799d65c19557
BLAKE2b-256 effb51d458625cd6134d60ac15180ae50995d7d21b0f2f92a6286ae7b0792d19

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 a184288538e6ad699cbe6b24859206e38ce5fba28f3bcfa51c90d0502c1582b2
MD5 370a2b14681c6dc4af8596f62d96bb20
BLAKE2b-256 3004e1ee6f8b22034302d4c5c24e15782bdedf76d90b90f3874ed0b48525def0

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.2.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 3905a5fffcc23e597ee4d9fb3fcd209bd658c352657548db7316e810ca80458e
MD5 ee7689d2ecbcbd7c883f69099bd41892
BLAKE2b-256 5b40944c9ee264f875a2db6f79380944fd2b5bb9d712bb4a134d11f45ad5b693

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e09d40edfdb4e260cb1567d8ae770ccf3b8b7e9f0d9b5c2a9992696b30ce2742
MD5 5b12557dde538f99fd87d1682638a212
BLAKE2b-256 5a3dd20d24ee313992f0b7e7b9d9eef642d9b545d39d5b91c4a2cc8c98776328

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a98f6f20465e7618c83252c02041517bd2f7ea29be5378f09667a8f654a5918d
MD5 4d30c57bd7103b36a4bf7a4a9e25e10d
BLAKE2b-256 dd37dfb2056842ac61315f225aa56f455da369f5223e4c5a38b91d20da1b628b

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571
MD5 bf9af9abb1e30521b3491f0748ba6199
BLAKE2b-256 df5413535f74391dbe5f479ceed96f1403267be302c840040700d4fd66688089

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 18142b497d70a34b01642b9feabb70156311b326fdddd875a9981f34a369b671
MD5 83f51806139d5adc70a2e309d0300ad1
BLAKE2b-256 34865b9c2b7c56e7a9d9297a0a4be0b8433f498eba52a8f5892d9132b0f64627

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 5a145e956b374e72ad1dff82779177d4a3c62bc8248f41b80cb5122e68f22d13
MD5 ba74e1f7142954127fb2aef544a6b05e
BLAKE2b-256 c79900d8a1a8eb70425bba7880257ed73fed08d3e8d05da4202fb6b9a81d5ee4

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 1c92113619f7b272838b8d6702a7f8ebe5edea0df48166c47929611d0b4dea69
MD5 e4086f43f9ce29b5adf939e1b5150f03
BLAKE2b-256 b454817e6894168a43f33dca74199ba0dd0f1acd99aa6323ed6d323d63d640a2

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f0986e917aca18f7a567b812ef7ca9391288e2acb7a4308aa9d265bd724bdae
MD5 4fb63be6d2b92acfba0c2eaedce82e06
BLAKE2b-256 16cb88f6c1e6df83002c421d5f854ccf134aa088aa997af786a5dac3f32ec99b

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f8c8b141ef9699ae777c6278b52c706b653bf15d135d302754f6b2e90eb30367
MD5 330838b6e06481341b35f8d4b6b50bbb
BLAKE2b-256 bd4c0d1eef206545c994289e7a9de21b642880a11e0ed47a2b0c407c688c4f69

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3a4199f519e57d517ebd48cb76b36c82da0360781c6a0353e64c0cac30ecaad3
MD5 6ffe9e1abf69bb8c4ee2e913b1badfde
BLAKE2b-256 89ea00537f599eb230771157bc509f6ea5b2dddf05d4b09f9d2f1d7096a18781

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.2.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 afe8fb968743d40435c3827632fd36c5fbde633b0423da7692e426529b1759b1
MD5 f9cb2f38ae8272ab5eb4b209c59be45f
BLAKE2b-256 113e491c34262cb1fc9dd13a00beb80d755ee0517b17db20e54cac7aa524533e

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0798b138c291d792f8ea40fe3768610f3c7dd2574389e37c3f26573757c8f7ef
MD5 a4198f53e3906394012ab88dffff4077
BLAKE2b-256 9c61f311693f78cbf635cfb69ce9e1e857ff83937a27d93c96ac5932fd33e330

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 cb24cca1968b21355cc6f3da1a20cd1cebd8a023e3c5b09b432444617949085a
MD5 92e9b03039ab737e6799dbd9d057fce2
BLAKE2b-256 999c58a673faa9e8a0e77248e782f7a17410cf7259b326265646fd50ed49c4e1

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85ad7d11b309bd132d74397fcf2920933c9d1dc865487128f5c03d580f2c3d03
MD5 bb69665b4b68b7af82939132972e8261
BLAKE2b-256 9024d0bbb56abdd8934f30384632e3c2ca1ebfeb5d17e150c6e366ba291de36b

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 57fcc997ffc0bef234b8875a54d4058afa92b0b0c4223fc1f62f24b3b5e86038
MD5 2f10d9bc44635078a6222ed50c9fd0f2
BLAKE2b-256 fc29a3d938ddc5a534cd53df7ab79d20a68db8c67578de1df0ae0118230f5f54

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e2b8cd48a9942ed3f85b95ca4105c45758438c7ed28fff1e4ce3e57c3b589d8e
MD5 dfacf4ee4842d845f5e12f912ebc2055
BLAKE2b-256 e622fab7e1510a62e5092f4e6507a279020052b89f11d9cfe52af7f52c243b04

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 ebe5e59545401fbb1b24da76f006ab19734ae71e703cdb4a8b347e84a0cece67
MD5 584b4063eb66688b607f7e7bdca58011
BLAKE2b-256 416da654d519d24e4fcc7a83d4a51209cda086f26cf30722b3d8ffc1aa9b775e

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58b92a5828bd4d9aa0952492b7de803135038de47343b2aa3cc23f3b71a3dc4e
MD5 3f3978b5e480ed18d55b1799d9a534ff
BLAKE2b-256 603dac4fb63f36db94f4c7db05b45e3ecb3f88f778ca71850664460c78cfde41

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cff210198bb4cae3f3c100444c5eaa573a823f05c253e7188e1362a5555235b3
MD5 db4377351f167d82adc66b16965d11bd
BLAKE2b-256 7fbca20dc4e1d051149052762e7647455311865d11c603170c476d1e910a353e

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 16757cf28621e43e252c560d25b15f18a2f11da94fea344bf26c599b9cf54b73
MD5 48a3792698a81917320b91a30c0bacf4
BLAKE2b-256 d0063d1ff6ed377cb0340baf90487a35f15f9dc1db8e0a07de2bf2c54a8e490f

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.2.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 4723a50e1523e1de4fccd1b9a6dcea750c2102461e9a02b2ac55ffeae09a4410
MD5 1468ae1cb59a43991b199cfa6f1e5679
BLAKE2b-256 8ae7ea8b7652564113f218e75b296e3545a256d88b233021f792fd08591e8f33

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4e58666988605e251d42c2818c7d3d8991555381be26399303053b58a5bbf30d
MD5 895c6588c74019b94fb3c740b9e9a0f5
BLAKE2b-256 05512d706d14adee8f5c70c5de3831673d4d57051fc9ac6f3f6bff8811d2f9bd

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a222d764352c773aa5ebde02dd84dba3279c81c6db2e482d62a3fa54e5ece69b
MD5 7c86d51d89dbc5a6860d65641ea131ef
BLAKE2b-256 b42436cce77559572bdc6c8bcdd2f3e0db03c7079d14b9a1cd342476d7f451e8

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2aed8fcf8abc3020d6a9ccb31dbc9e7d7819c56a348cc88fd44be269b37427e
MD5 fd14624d40100a5eb0181bf393394448
BLAKE2b-256 523310825f580f42a353f744abc450dcd2a4b1e6f1931abb0ccbd1d63bd3993c

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 40deb10198bbaa531509aad0cd2f9fadb26c8b94070831e2208e7df543562b74
MD5 3f5203ae901ddd78cb298582eda07627
BLAKE2b-256 ea15e33a7d86d8ce91de82c34ce94a87f2b8df891e603675e83ec7039325ff10

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 3579eaeb5e07f3ded59298ce22b65f877a86ba8e9fe701f5576c99bb17c283da
MD5 946b2510c86eb48e374e6987582c9b46
BLAKE2b-256 e9b5306ac6ee3f8f0c51abd3664ee8a9b8e264cbf179a860674827151ecc0a9c

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 0557eebc699c1c34cccdd8c3778c9294e8196df27d713706895edc6f57d29608
MD5 72c10ef28a0ddffe6bf2495954ab82e0
BLAKE2b-256 3678c38af7833c4f29999cdacdf12452b43b660cd25a1990ea9a7edf1fb01f17

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0da8495970f6b101ddd0c38ace92edea30e7e12b9a926b57f5fabb1ecc25bb90
MD5 aa8060c013c04133b63780025eef4451
BLAKE2b-256 854f5f0be4c5c93525e663573bab9e29bd88a71f85de3a0d01413ee05bce0c2f

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9874bc2ff574c40ab7a5cbb7464bf9b045d617e36754a7bc93f933d52bd9ffc6
MD5 769e53438154e53ba490fb4f816c083e
BLAKE2b-256 801b736023977a96e787c4e7653a1ac2d31d4f6ab6b4048f83c8359f7c0af2e3

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 54dc1d6d66f8d37843ed281773c7174f03bf7ad826523f73435deb88ba60d2d4
MD5 58934f23b6bc71fb1f984b688c1c6136
BLAKE2b-256 974e0b7debcd013214db224997b0d3e39bb7b3656d37d06dfc31bb57d42d143b

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b30042fe92dbd79f1ba7f6898fada10bdaad1847c44f2dff9a16147e00a93661
MD5 9b04caec124cadf90005ccdb662aad9f
BLAKE2b-256 41f0fa2a76e893a05764e4474f6011575c4e4ccf32af9c95bfcc8ef4b8a99f69

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7fe4bb0695fe986a9e4deec3b6857003b4cfe5c5e4aac0b95f6a658c14635e31
MD5 f6ab05f787221bbaf8fb4a9778af5467
BLAKE2b-256 ffb33b18321c94a6a6a1d972baf1b39a6de50e65c991002c014ffbcce7e09be8

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3f2f5cddeaa4424a0a118924b988746db6ffa8565e5829b1841a8a3bd73eb59a
MD5 c3c75c2299f5163770e2e42f0dee5276
BLAKE2b-256 8d85b65f4596748cc5468c0a978a16b3be45f6bcec78339b0fe7bce71d121d89

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 122fd2fcfafdefc889c64ad99c228d5a1f9692c3a83f56c292618a59aa60ae83
MD5 64c083cdbd91eb8670cd72b619f3a039
BLAKE2b-256 4c49c2adeccc8a47bcd9335ec000dfcb4de34a7c34aeaa23af57cd504017e8c3

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7fe8f3583e0607ad4e43a954e35c1748b553bfe9fdac8635c02058023277d1b3
MD5 fd60e410e5db402a2d0c0cb4dd23281d
BLAKE2b-256 0c0a22129c3107c4fb237f97876df4399a5c3a83f3d95f86e0353ae6fbbd202f

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 36b2b43146f646642b425dd2027730f99bac962618ec2052932157e213a040e9
MD5 e4f9e3117075ffe53d7993253c774158
BLAKE2b-256 7396a4c8a86300dbafc7e4f44d8986f8b64950b7f4640a2dc5c91e036afe28c6

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 b606b1aaf802e6468c2608c65ff7ece53eae1a6874b3765f69b8ceb20c5fa78e
MD5 8ef666a462d3765ccfd5288f2fdf8e08
BLAKE2b-256 c943850c040481c19c1c2289203a606df1a202eeb3aa81440624bac891024f83

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a62eb442011776e4036af5c8b1a00b706c5bc02dc15eb5344b0c750428c94219
MD5 7d3773d9b665b2d7cfec0cc0b760e69e
BLAKE2b-256 2c645577dc71240272749e07fcacb47c0f29e31ba4fbd1613fefbd1aa88efc29

See more details on using hashes here.

File details

Details for the file numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e25507d85da11ff5066269d0bd25d06e0a0f2e908415534f3e603d2a78e4ffa
MD5 1b58b9e275e80364cd02dafb3f8daf35
BLAKE2b-256 c7813882353e097204fe4d7a5fe026b694b0104b78f930c969faadeed1538e00

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page