NumPy is the fundamental package for array computing with Python.
Project description
It provides:
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
numpy-1.16.0.zip
(5.1 MB
view hashes)
Built Distributions
numpy-1.16.0-cp37-cp37m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.0-cp36-cp36m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.0-cp35-cp35m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.0-cp27-cp27m-win32.whl
(10.0 MB
view hashes)
Close
Hashes for numpy-1.16.0-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64ff21aac30d40c20ba994c94a08d439b8ced3b9c704af897e9e4ba09d10e62c |
|
MD5 | 22af7b6ff2da30fca2334886fdbf8573 |
|
BLAKE2b-256 | dd3e0d7a914ee6cceef588dd83b18e257dc474ac67028a8d340dfec644878128 |
Close
Hashes for numpy-1.16.0-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fea682f6ddc09517df0e6d5caad9613c6d91a42232aeb082df67e4d205de19cc |
|
MD5 | 25da2b41f81d4862bb36a07218477ea6 |
|
BLAKE2b-256 | 94b5f4bdf7bce5f8b35a2a83a0b70c545ca061a50b54724b5287505064906b14 |
Close
Hashes for numpy-1.16.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b19a47ff1bd2fca0cacdfa830c967746764c32dca6a0c0328d9c893f4bfe2f6b |
|
MD5 | 8d87c0b1f8d7ad46b1976328d6c66cef |
|
BLAKE2b-256 | 3d1062224c551acfd3a3583ad16d1e0f1c9e9c333e74479dc51977c31836119c |
Close
Hashes for numpy-1.16.0-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c6251e0f0ecac53ba2b99d9f0cc16fa9021914a78869c38213c436ba343641f0 |
|
MD5 | d424c537c28510340f06a317608d7743 |
|
BLAKE2b-256 | d4c07ff4636c2a4bc97a8dfd452c7529e4b3700b7c031d6e3f21de2a98d4ee33 |
Close
Hashes for numpy-1.16.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 32af2bcf4bb7631dac19736a6e092ec9715e770dcaa1f85fcd99dec5040b2a4d |
|
MD5 | 748fe792a69f79b0c3a926139b23bdbc |
|
BLAKE2b-256 | 830d1dd2f96eff7f5df22166066f7dbd213428d46f78f8ed9dea8345ca1a1f51 |
Close
Hashes for numpy-1.16.0-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef4ae41add536cb825d8aa029c15ef510aead06ea5b68daea64f0b9ecbff17db |
|
MD5 | b1e5a08c6a85c8a51f8039b3dc3dad3d |
|
BLAKE2b-256 | 317e8905636f7e4f9b9d7078aa0e701500634f832f145855a11beb098d3b0fb1 |
Close
Hashes for numpy-1.16.0-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95c830b09626508f7808ce7f1344fb98068e63143e6050e5dc3063142fc60007 |
|
MD5 | 2ce0cc7d22e3f94e51315c1df4fd81bd |
|
BLAKE2b-256 | 6eef1402e6016ba0aa19463198be521b265c6bbe4ee892a7f42385d29e8d894d |
Close
Hashes for numpy-1.16.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2d279bd99329e72c30937bdef82b6dc7779c7607c5a379bab1bf76be1f4c1422 |
|
MD5 | 5877c113fcd82198ad2285e3074a089c |
|
BLAKE2b-256 | 7b7454c5f9bb9bd4dae27a61ec1b39076a39d359b3fb7ba15da79ef23858a9d8 |
Close
Hashes for numpy-1.16.0-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f1232f98a6bbd6d1678249f94028bccc541bbc306aa5c4e1471a881b0e5a3409 |
|
MD5 | 26ceb7aa63fa82bc444e69156444fe6f |
|
BLAKE2b-256 | 3304b7d3f32f6be7b5d3a9b884f4b281b10b77f8d77c11006cf7e3887077579d |
Close
Hashes for numpy-1.16.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 00a458d6821b1e87be873f2126d5646b901047a7480e8ae9773ecf214f0e19f3 |
|
MD5 | 809ed96a113cf46e81ae50c9703e7a5c |
|
BLAKE2b-256 | e450380aebcda065f62febb99fd5a7253d27d9f10719c5d90938ee642b4fee54 |
Close
Hashes for numpy-1.16.0-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c40cb17188f6ae3c5b6efc6f0fd43a7ddd219b7807fe179e71027849a9b91afc |
|
MD5 | 4ed0e6114562eefb75da7aadc3db4f8a |
|
BLAKE2b-256 | b1a58db6c28b20f726bef80e8db46fe60dbe8ed37191c3dd70287f694bb20c05 |
Close
Hashes for numpy-1.16.0-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0470c5dc32212a08ebc2405f32e8ceb9a5b1c8ac61a2daf9835ec0856a220495 |
|
MD5 | 608e1d02d014bda5c4081881a25f9fbc |
|
BLAKE2b-256 | 8bf928a9f39bb75b3c371dc48c9ddee64f6ce7fc6397fdc4ab2abb68d674ad7d |
Close
Hashes for numpy-1.16.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e90a9fce378114b6c2fc01fff7423300515c7b54b7cc71b02a22bc0bd7dfdd8 |
|
MD5 | ee52de6e269576f468285b0f45fe9618 |
|
BLAKE2b-256 | 64242e9c72f44cec8c872000d78c54230e40550c494647e352d1d06724cdaee6 |
Close
Hashes for numpy-1.16.0-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1dd8221f0e69038748f47b8bb3248d0b9ecdf13fe837440951c3d5ff72639bb |
|
MD5 | 968ea61a147bd500b5d858b91ccf709d |
|
BLAKE2b-256 | 296cef26c395372b2b17b8b1354ac7bbc92fbe862346f96c852f18875374a1ea |
Close
Hashes for numpy-1.16.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 96e49a0c82b4e3130093002f625545104037c2d25866fa2e0c90d6e54f5a1fbc |
|
MD5 | 048918abcf3936c947d06f1ee629757e |
|
BLAKE2b-256 | 5d372b3c5ee232635a3c3ed41f454395e9714837bf0745b1b76f3fae57881c86 |
Close
Hashes for numpy-1.16.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 24a9c287a4a1c427c2d45bf7c4fc6180c52a08fa0990d4c94e4c86a9b1e23ba5 |
|
MD5 | c47496091e10e31eeb9d9b07f3136237 |
|
BLAKE2b-256 | 9f85163127d3fb0573deb9eca947cfc73aa3618eaaf8656501460574471d114a |
Close
Hashes for numpy-1.16.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 803b2af862dcad6c11231ea3cd1015d1293efd6c87088be33d713a9b23e9e419 |
|
MD5 | 7253e6e78dc1ae134abcf40201ca73ad |
|
BLAKE2b-256 | 70fbe8928eaf79755412b0ae7828cc48f66eb221ab6c4946861e7af3849d098e |
Close
Hashes for numpy-1.16.0-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25600e8901012180a1b7cd1ac3e27e7793586ecd432383191929ac2edf37ff5d |
|
MD5 | 9a53cf0c5e77f02ea9b5ff3587a1f8ac |
|
BLAKE2b-256 | 3e2a59c727ba3a372cbcc6f4fb8ab9cdba5870dff6afa60bf6a5370c1a76a424 |
Close
Hashes for numpy-1.16.0-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5774d49516c37fd3fc1f232e033d2b152f3323ca4c7bfefd7277e4c67f3c08b4 |
|
MD5 | 63648ca2ba0dae7f7f57cc8fc87f0fba |
|
BLAKE2b-256 | a87cd78396c17f688085ee0114c8f01ae5c6e06093488631288df127592da61f |
Close
Hashes for numpy-1.16.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f00a2c21f60284e024bba351875f3501c6d5817d64997a0afe4f4355161a8889 |
|
MD5 | 66d2e3fee4504c371da147a56fa9f900 |
|
BLAKE2b-256 | 8307eb07c1dfb13e681af8862d10b3ac031fafd4270fd41d11a81eafbbbda42b |
Close
Hashes for numpy-1.16.0-cp27-cp27m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | be43df2c563e264b38e3318574d80fc8f365df3fb745270934d2dbe54e006f41 |
|
MD5 | a1afdd521bf4480f4a5f43f39a345a80 |
|
BLAKE2b-256 | 1c575d9daa01e020207f44146b94c34ba121f03d9eeebc8286ea9059627db42d |
Close
Hashes for numpy-1.16.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a80ecac5664f420556a725a5646f2d1c60a7c0489d68a38b5056393e949e27ac |
|
MD5 | 67d46af4e62111285f27a9c5731f16f9 |
|
BLAKE2b-256 | e497167eb80dadcf2905b58d66ada6c128d3ec5e8595beb02457b881e7399be3 |