NumPy: array processing for numbers, strings, records, and objects.
Project description
- NumPy is a general-purpose array-processing package designed to
efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.
There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
numpy-1.6.2.zip
(2.9 MB
view hashes)
numpy-1.6.2.tar.gz
(2.6 MB
view hashes)
Built Distributions
numpy-1.6.2.win32-py3.2.exe
(2.7 MB
view hashes)
numpy-1.6.2.win32-py3.1.exe
(2.7 MB
view hashes)
numpy-1.6.2.win32-py2.7.exe
(2.6 MB
view hashes)
numpy-1.6.2.win32-py2.6.exe
(2.6 MB
view hashes)
numpy-1.6.2.win32-py2.5.exe
(2.5 MB
view hashes)
Close
Hashes for numpy-1.6.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 88f47e2b4da48782e3afee756004f43eace007e00bf0fc84d6e9694cc51c36c5 |
|
MD5 | 4c40e31f0c95bb6b00bb154a0ffe2054 |
|
BLAKE2b-256 | 62c426d4115edd63a0fb5c3c8809ccd90e608a13b6221d7d00f696e9fce433eb |
Close
Hashes for numpy-1.6.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4ff1435154f8542ada31db3ad5a7891dc7f5e661c0bd434314523a5dbcaa41d |
|
MD5 | 1a7b2edf1e2006ec6f463e497cf0d72f |
|
BLAKE2b-256 | 5da9bf3e87bb9353875f387326b3e73ea11ee14c4270d71fe9e87d01858e85ca |
Close
Hashes for numpy-1.6.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3fc768caacf13a918c92e4b545cbffb8fe746724ec620a11deae4d7da0ac4353 |
|
MD5 | b871378b86b4dffae0b48bdbfeb49410 |
|
BLAKE2b-256 | 27e5c7fa8b4908348e004ac1098ecd13d57fc42c692949b94c89da094bbe96ea |
Close
Hashes for numpy-1.6.2-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5bf9df60119dc556357592b6156768e0c7e98989fb9f1b6d6ea1b99305b6328f |
|
MD5 | 4739f87265bf1feb9db684e178e78ac4 |
|
BLAKE2b-256 | 0ca9d5619a0d5c98f915696850c1b5f8566ce82d0ea83bf9834d419c1ceed6d8 |
Close
Hashes for numpy-1.6.2-cp26-cp26m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fac7a12d248673edb407f5cceac01c0df2f5e275ceebb301bbac7e2fa6f8e5c6 |
|
MD5 | fc2179f9b44edf59f862df6fa0e49fe9 |
|
BLAKE2b-256 | e1ef7aa7addd74e79bc3de1b47016c1a9080ffea4880474bd055b5643c67aa18 |