Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.2.4.tar.gz (20.3 MB view details)

Uploaded Source

Built Distributions

numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl (12.9 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.1 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.2.4-cp313-cp313t-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.13t Windows x86-64

numpy-2.2.4-cp313-cp313t-win32.whl (6.4 MB view details)

Uploaded CPython 3.13t Windows x86

numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ x86-64

numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl (14.2 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.2.4-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.2.4-cp313-cp313-win32.whl (6.3 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.2.4-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.2.4-cp312-cp312-win32.whl (6.3 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numpy-2.2.4-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.2.4-cp311-cp311-win32.whl (6.6 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.2.4-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.2.4-cp310-cp310-win32.whl (6.6 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.2.4.tar.gz.

File metadata

  • Download URL: numpy-2.2.4.tar.gz
  • Upload date:
  • Size: 20.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4.tar.gz
Algorithm Hash digest
SHA256 9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f
MD5 56232f4a69b03dd7a87a55fffc5f2ebc
BLAKE2b-256 e17831103410a57bc2c2b93a3597340a8119588571f6a4539067546cb9a0bfac

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b4adfbbc64014976d2f91084915ca4e626fbf2057fb81af209c1a6d776d23e3d
MD5 7330087a6ad1527ae20a495e2fb3b357
BLAKE2b-256 3b3a2f6d8c1f8e45d496bca6baaec93208035faeb40d5735c25afac092ec9a12

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0f35b19894a9e08639fd60a1ec1978cb7f5f7f1eace62f38dd36be8aecdef4d
MD5 a884ed5263b91fa87b5e3d14caf955a5
BLAKE2b-256 54f5ab0d2f48b490535c7a80e05da4a98902b632369efc04f0e47bb31ca97d8f

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 ab2939cd5bec30a7430cbdb2287b63151b77cf9624de0532d629c9a1c59b1d5c
MD5 e4e73511eac8f1a10c6abbd6fa2fa0aa
BLAKE2b-256 ba3074c48b3b6494c4b820b7fa1781d441e94d87a08daa5b35d222f06ba41a6f

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7051ee569db5fbac144335e0f3b9c2337e0c8d5c9fee015f259a5bd70772b7e8
MD5 65e284546c5ee575eca0a3726c0a1d98
BLAKE2b-256 b25cf09c33a511aff41a098e6ef3498465d95f6360621034a3d95f47edbc9119

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.4-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d
MD5 893fd2fdd42f386e300bee885bbb7778
BLAKE2b-256 3e05eb7eec66b95cf697f08c754ef26c3549d03ebd682819f794cb039574a0a6

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.2.4-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286
MD5 811d25a008c68086c9382487e9a4127a
BLAKE2b-256 e52b878576190c5cfa29ed896b518cc516aecc7c98a919e20706c12480465f43

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff
MD5 554dbfa52988d01f715cbe8d4da4b409
BLAKE2b-256 cbdc4fc7c0283abe0981e3b89f9b332a134e237dd476b0c018e1e21083310c31

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc
MD5 369eebec47c9c27cb4841a13e9522167
BLAKE2b-256 fa0374c5b631ee1ded596945c12027649e6344614144369fd3ec1aaced782882

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8
MD5 ba825efd05cca6d56c3dca9f7f1f88e7
BLAKE2b-256 00065306b8199bffac2a29d9119c11f457f6c7d41115a335b78d3f86fad4dbe8

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960
MD5 e6eccf936d25c9eda9df1a4d50ae2fdc
BLAKE2b-256 417896dddb75bb9be730b87c72f30ffdd62611aba234e4e460576a068c98eff6

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0
MD5 1cc2731a246079bcab361179f38e7ccb
BLAKE2b-256 a5fdd4a29478d622fedff5c4b4b4cedfc37a00691079623c0575978d2446db9e

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd
MD5 e299021397c3cdb941b7ffe77cf0fefe
BLAKE2b-256 036807b4cd01090ca46c7a336958b413cdbe75002286295f2addea767b7f16c9

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39
MD5 7504018213a3a8fea7173e2c1d0fcfd1
BLAKE2b-256 3a75bb4573f6c462afd1ea5cbedcc362fe3e9bdbcc57aefd37c681be1155fbaa

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8
MD5 3e2f31e01b45cd16a87b794477de3714
BLAKE2b-256 fae2793288ede17a0fdc921172916efb40f3cbc2aa97e76c5c84aba6dc7e8747

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.4-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3
MD5 66801fe84a436b7ed3be6e0082b86917
BLAKE2b-256 5217d0dd10ab6d125c6d11ffb6dfa3423c3571befab8358d4f85cd4471964fcd

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.2.4-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c
MD5 04bf8d0f6a9e279ab01df4ed0b4aeee1
BLAKE2b-256 b9eb38c06217a5f6de27dcb41524ca95a44e395e6a1decdc0c99fec0832ce6ae

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd
MD5 329288501f012606605bdbed368e58e9
BLAKE2b-256 a57897c775bc4f05abc8a8426436b7cb1be806a02a2994b195945600855e3a25

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6
MD5 e8597c611a919a8e88229d6889c1f86e
BLAKE2b-256 febc2218160574d862d5e55f803d88ddcad88beff94791f9c5f86d67bd8fbf1c

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7
MD5 9970699bd95e8a64a562b1e6328b83d0
BLAKE2b-256 4b04e208ff3ae3ddfbafc05910f89546382f15a3f10186b1f56bd99f159689c2

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298
MD5 9293b0575a902b2d55c35567dee7679e
BLAKE2b-256 137341b7b27f169ecf368b52533edb72e56a133f9e86256e809e169362553b49

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc
MD5 7fd16554fa0a15b7f99b1fabf1c4592c
BLAKE2b-256 1c8be2fc8a75fcb7be12d90b31477c9356c0cbb44abce7ffb36be39a0017afad

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392
MD5 92c9a30386a64f2deddad1db742bd296
BLAKE2b-256 6a7067b24d68a56551d43a6ec9fe8c5f91b526d4c1a46a6387b956bf2d64744e

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0
MD5 cf781fd5412ffd826e0436883452cc17
BLAKE2b-256 c3bc2b3545766337b95409868f8e62053135bdc7fa2ce630aba983a2aa60b559

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7
MD5 e94003c2b65d81b00203711c5c42fb8e
BLAKE2b-256 2ad0bd5ad792e78017f5decfb2ecc947422a3669a34f775679a76317af671ffc

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146
MD5 be21ccbf8931e92ba1fdb2dc1250bf2a
BLAKE2b-256 46698c4f928741c2a8efa255fdc7e9097527c6dc4e4df147e3cadc5d9357ce85

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.2.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00
MD5 507e550a55b19dedf267b58a487ba0bc
BLAKE2b-256 2b93df59a5a3897c1f036ae8ff845e45f4081bb06943039ae28a3c1c7c780f22

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f
MD5 95f1a27d33106fa9f40ee0714681c840
BLAKE2b-256 041ef8bb88f6157045dd5d9b27ccf433d016981032690969aa5c19e332b138c0

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb
MD5 07b44109381985b48d1eef80feebc5ad
BLAKE2b-256 8e21efd47800e4affc993e8be50c1b768de038363dd88865920439ef7b422c60

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592
MD5 bd23a12ead870759f264160ab38b2c9d
BLAKE2b-256 02e2e2cbb8d634151aab9528ef7b8bab52ee4ab10e076509285602c2a3a686e0

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba
MD5 c4452a5dc557c291904b5c51a4148237
BLAKE2b-256 0eb254122b3c6df5df3e87582b2e9430f1bdb63af4023c739ba300164c9ae503

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee
MD5 7cb37fc9145d0ebbea5666b4f9ed1027
BLAKE2b-256 623082116199d1c249446723c68f2c9da40d7f062551036f50b8c4caa42ae252

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24
MD5 eb08f551bdd6772155bb39ac0da47479
BLAKE2b-256 27f6dba8a258acbf9d2bed2525cdcbb9493ef9bae5199d7a9cb92ee7e9b2aea6

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854
MD5 c524d1020b4652aacf4477d1628fa1ba
BLAKE2b-256 246d9483566acfbda6c62c6bc74b6e981c777229d2af93c8eb2469b26ac1b7bc

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4
MD5 91121787f396d3e98210de8b617e5d48
BLAKE2b-256 a230182db21d4f2a95904cec1a6f779479ea1ac07c0647f064dea454ec650c42

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91
MD5 5b11fe8d26318d85e0bc577a654f6643
BLAKE2b-256 8b7210c1d2d82101c468a28adc35de6c77b308f288cfd0b88e1070f15b98e00c

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.2.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09
MD5 33ff8081378188894097942f80c33e26
BLAKE2b-256 5e05463c023a39bdeb9bb43a99e7dee2c664cb68d5bb87d14f92482b9f6011cc

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6
MD5 afbc410fb9b42b19f4f7c81c21d6777f
BLAKE2b-256 f0dc8569b5f25ff30484b555ad8a3f537e0225d091abec386c9420cf5f7a2976

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687
MD5 3603e683878b74f38e5617f04ff6a369
BLAKE2b-256 22319b2ac8eee99e001eb6add9fa27514ef5e9faf176169057a12860af52704c

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5
MD5 e36963a4c177157dc7b0775c309fa5a8
BLAKE2b-256 c55cceefca458559f0ccc7a982319f37ed07b0d7b526964ae6cc61f8ad1b6119

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1
MD5 db9ae978afb76a4bf79df0657a66aaeb
BLAKE2b-256 d5ee96457c943265de9fadeb3d2ffdbab003f7fba13d971084a9876affcda095

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880
MD5 059788668d2c4e9aace4858e77c099ed
BLAKE2b-256 5dfaaa7cd6be51419b894c5787a8a93c3302a1ed4f82d35beb0613ec15bdd0e2

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f
MD5 889f3b507bab9272d9b549780840a642
BLAKE2b-256 2b3ee7247c1d4f15086bb106c8d43c925b0b2ea20270224f5186fa48d4fb5cbd

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4
MD5 a886a9f3e80a60ce6ba95b431578bbca
BLAKE2b-256 a20a1212befdbecab5d80eca3cde47d304cad986ad4eec7d85a42e0b6d2cc2ef

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4
MD5 494f60d8e1c3500413bd093bb3f486ea
BLAKE2b-256 16fb09e778ee3a8ea0d4dc8329cca0a9c9e65fed847d08e37eba74cb7ed4b252

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542
MD5 e5cb2a5d14bccee316bb73173be125ec
BLAKE2b-256 01e3cb04627bc2a1638948bc13e818df26495aa18e20d5be1ed95ab2b10b6847

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.2.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a
MD5 e00bd3ac85d8f34b46b7f97a8278aeb3
BLAKE2b-256 0dbd6a092963fb82e6c5aa0d0440635827bbb2910da229545473bbb58c537ed3

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017
MD5 a5aff3a7eb2923878e67fbe1cd04a9e9
BLAKE2b-256 b0b74472f603dd45ef36ff3d8e84e84fe02d9467c78f92cc121633dce6da307b

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3
MD5 d857867787fe1eb236670e7fdb25f414
BLAKE2b-256 1a973b1537776ad9a6d1a41813818343745e8dd928a2916d4c9edcd9a8af1dac

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020
MD5 677b3031105e24eaee2e0e57d7c2a306
BLAKE2b-256 c2072e5cc71193e3ef3a219ffcf6ca4858e46ea2be09c026ddd480d596b32867

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2
MD5 5bdf5b63f4ee01fa808d13043b2a2275
BLAKE2b-256 4c22fb1be710a14434c09080dd4a0acc08939f612ec02efcb04b9e210474782d

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9
MD5 9982a91d7327aea541c24aff94d3e462
BLAKE2b-256 7fa53d7094aa898f4fc5c84cdfb26beeae780352d43f5d8bdec966c4393d644c

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775
MD5 826e52cd898567a0c446113ab7a7b362
BLAKE2b-256 c7b92c4e96130b0b0f97b0ef4a06d6dae3b39d058b21a5e2fa2decd7fd6b1c8f

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae
MD5 bf7fd01bb177885e920173b610c195d9
BLAKE2b-256 79c2f50921beb8afd60ed9589ad880332cfefdb805422210d327fb48f12b7a81

See more details on using hashes here.

File details

Details for the file numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9
MD5 935928cbd2de140da097f6d5f4a01d72
BLAKE2b-256 0489a79e86e5c1433926ed7d60cb267fb64aa578b6101ab645800fd43b4801de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page