Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.2.3.tar.gz (20.3 MB view details)

Uploaded Source

Built Distributions

numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.1 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.2.3-cp313-cp313t-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.13t Windows x86-64

numpy-2.2.3-cp313-cp313t-win32.whl (6.3 MB view details)

Uploaded CPython 3.13t Windows x86

numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ x86-64

numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.2.3-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.2.3-cp313-cp313-win32.whl (6.3 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.2.3-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.2.3-cp312-cp312-win32.whl (6.3 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numpy-2.2.3-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.2.3-cp311-cp311-win32.whl (6.6 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.2.3-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.2.3-cp310-cp310-win32.whl (6.6 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.2.3.tar.gz.

File metadata

  • Download URL: numpy-2.2.3.tar.gz
  • Upload date:
  • Size: 20.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3.tar.gz
Algorithm Hash digest
SHA256 dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020
MD5 c6ee254bcdf1e2fdb13d87e0ee4166ba
BLAKE2b-256 fb908956572f5c4ae52201fdec7ba2044b2c882832dcec7d5d0922c9e9acf2de

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4
MD5 0d856a89e028c393f8125739c56591e0
BLAKE2b-256 177fd322a4125405920401450118dbdc52e0384026bd669939484670ce8b2ab9

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e
MD5 b4336174c843c4943084e17945cd1165
BLAKE2b-256 a8a968aa7076c7656a7308a0f73d0a2ced8c03f282c9fd98fa7ce21c12634087

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9
MD5 f7d2ba950c5aa11c100bb6bf202d5799
BLAKE2b-256 29e85da32ffcaa7a72f7ecd82f90c062140a061eb823cb88e90279424e515cf4

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d
MD5 3615d13c8c14c323aeda1c07d5a7fd55
BLAKE2b-256 0ab5a7839f5478be8f859cb880f13d90fcfe4b0ec7a9ebaff2bcc30d96760596

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.3-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082
MD5 347b71f0db5b49a25ef1ed677e47999b
BLAKE2b-256 979b484f7d04b537d0a1202a5ba81c6f53f1846ae6c63c2127f8df869ed31342

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.2.3-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef
MD5 1dca2f20e0accc1741e5fb233ecf7dff
BLAKE2b-256 5b576dbdd45ab277aff62021cafa1e15f9644a52f5b5fc840bc7591b4079fb58

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf
MD5 d7b512f83999d05c47e55b931f2dcdfe
BLAKE2b-256 5343c0f5411c7b3ea90adf341d05ace762dad8cb9819ef26093e27b15dd121ac

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a
MD5 62841d4b49c5a0cef2c2ba26a16f6959
BLAKE2b-256 af53d1c599acf7732d81f46a93621dab6aa8daad914b502a7a115b3f17288ab2

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76
MD5 7f24ce01ad5c352c76614a12fa5e2319
BLAKE2b-256 0c935d7d19955abd4d6099ef4a8ee006f9ce258166c38af259f9e5558a172e3e

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610
MD5 f1d85f322c3e85ef748c3e5594b94226
BLAKE2b-256 ffcf06e37619aad98a9d03bd8d65b8e3041c3a639be0f5f6b0a0e2da544538d4

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0
MD5 32eb2ed1e734ea26c90f75b1f5616564
BLAKE2b-256 333551e94011b23e753fa33f891f601e5c1c9a3d515448659b06df9d40c0aa6e

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94
MD5 cc5aceacd0a44a67cdd2cf8d5a446ca3
BLAKE2b-256 fb612d9a694a0f9cd0a839501d362de2a18de75e3004576a3008e56bdd60fcdb

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c
MD5 aea9afa69d510ce905b2b8dbf0e33a11
BLAKE2b-256 aa99b478c384f7a0a2e0736177aafc97dc9152fc036a3fdb13f5a3ab225f1494

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890
MD5 2535d7c0f98ad848bcf1f48f7c358e41
BLAKE2b-256 a61f0b863d5528b9048fd486a56e0b97c18bf705e88736c8cea7239012119a54

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b
MD5 69c98e036d59eb74e4620c7649b5d7fc
BLAKE2b-256 97e77d55a86719d0de7a6a597949f3febefb1009435b79ba510ff32f05a8c1d7

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.2.3-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693
MD5 5a1497c262d9aa52ce6859a12a54ebbc
BLAKE2b-256 21d6b4c2f0564b7dcc413117b0ffbb818d837e4b29996b9234e38b2025ed24e7

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d
MD5 c5867508607f75ed23426315a7ad86d7
BLAKE2b-256 fbc88b55cf05db6d85b7a7d414b3d1bd5a740706df00bfa0824a08bf041e52ee

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304
MD5 945b91c2093fed2a1f34597fc66e5a35
BLAKE2b-256 d979ee4fe4f60967ccd3897aa71ae14cdee9e3c097e3256975cc9575d393cb42

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1
MD5 6575308269513900c94803258b89ac83
BLAKE2b-256 e443619c2c7a0665aafc80efca465ddb1f260287266bdbdce517396f2f145d49

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2
MD5 4d3d9b0c14db955e4b1aa1a1971d2def
BLAKE2b-256 5a3fd8a877b6e48103733ac224ffa26b30887dc9944ff95dffdfa6c4ce3d7df3

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5
MD5 8158c2e980a1cbfb4d98ff3a273bb2e9
BLAKE2b-256 2e69d96c006fb73c9a47bcb3611417cf178049aae159afae47c48bd66df9c536

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1
MD5 bb3f3a69219bbcdb719bbe38e4e69f79
BLAKE2b-256 206070af0acc86495b25b672d403e12cb25448d79a2b9658f4fc45e845c397a8

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50
MD5 c1fe5b6a9015c2877647419caa009be0
BLAKE2b-256 d9b4def6ec32c725cc5fbd8bdf8af80f616acf075fe752d8a23e895da8c67b70

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba
MD5 3a2de7f886cb756cf8d0375a36721926
BLAKE2b-256 0e8b88b98ed534d6a03ba8cddb316950fe80842885709b58501233c29dfa24a9

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d
MD5 884c1a89844f539ab15b7016a43d231c
BLAKE2b-256 426e55580a538116d16ae7c9aa17d4edd56e83f42126cb1dfe7a684da7925d2c

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.2.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe
MD5 c5f1e734c7d872e2f9af71d32e62d59c
BLAKE2b-256 9630f7bf4acb5f8db10a96f73896bdeed7a63373137b131ca18bd3dab889db3b

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8
MD5 a73da0434a971b21d8a9c0596015d629
BLAKE2b-256 dcb650bd027cca494de4fa1fc7bf1662983d0ba5f256fa0ece2c376b5eb9b3f0

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021
MD5 10d48fb9d86280db1afe7224b15a51af
BLAKE2b-256 d0a1e90f7aa66512be3150cb9d27f3d9995db330ad1b2046474a13b7040dfd92

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe
MD5 92c6c6c5b22b207425b329f061bd18fa
BLAKE2b-256 390478d2e7402fb479d893953fb78fa7045f7deb635ec095b6b4f0260223091a

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e
MD5 bb918cedd0931cb68af9e77096dedf54
BLAKE2b-256 3f19bcd641ccf19ac25abb6fb1dcd7744840c11f9d62519d7057b6ab2096eb60

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532
MD5 810d4908371bb2f08b0c7b16d3f05970
BLAKE2b-256 ebdc023dad5b268a7895e58e791f28dc1c60eb7b6c06fcbc2af8538ad069d5f3

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea
MD5 1b807acc844c2ba5be7bc7586d4a3a6b
BLAKE2b-256 cafad2c5575d9c734a7376cc1592fae50257ec95d061b27ee3dbdb0b3b551eb2

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95
MD5 c72318236531d3ca61d229eaf96f7d04
BLAKE2b-256 9bc02f4225073e99a5c12350954949ed19b5d4a738f541d33e6f7439e33e98e4

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d
MD5 12134dcf62b2bca2eeebb7bbc45c2a71
BLAKE2b-256 43ec43628dcf98466e087812142eec6d1c1a6c6bdfdad30a0aa07b872dc01f6f

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f
MD5 5e32a1cc3dcfe729f675784a53e4d553
BLAKE2b-256 b9c6cd4298729826af9979c5f9ab02fcaa344b82621e7c49322cd2d210483d3f

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.2.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5
MD5 559fefe30c0043a088adeca90231b382
BLAKE2b-256 4c87e71f89935e09e8161ac9c590c82f66d2321eb163893a94af749dfa8a3cf8

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b
MD5 28d20c95ff23d27ae639b4960df777ec
BLAKE2b-256 bc63a13ee650f27b7999e5b9e1964ae942af50bb25606d088df4229283eda779

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2
MD5 9b27cf1d6319f70370f4b0af10c03f5c
BLAKE2b-256 27c0a2379e202acbb70b85b41483a422c1e697ff7eee74db642ca478de4ba89f

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb
MD5 851dcbcbe90212c385dcdac1614cca83
BLAKE2b-256 e6d73cd47b00b8ea95ab358c376cf5602ad21871410950bc754cf3284771f8b6

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d
MD5 e93cf6ed4e1a3f9a8009ee7f2fcb0da8
BLAKE2b-256 722f8063da0616bb0f414b66dccead503bd96e33e43685c820e78a61a214c098

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636
MD5 f6763893ba9a5739fefa0929fd152db2
BLAKE2b-256 e2a7b14f0a73eb0fe77cb9bd5b44534c183b23d4229c099e339c522724b02678

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a
MD5 3f05819fcb71df1d3093e5d1c041a4e9
BLAKE2b-256 8d29076999b69bd9264b8df5e56f2be18da2de6b2a2d0e10737e5307592e01de

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b
MD5 97b925bac245aad1297d22ad3cfaa74c
BLAKE2b-256 20c393ecceadf3e155d6a9e4464dd2392d8d80cf436084c714dc8535121c83e8

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8
MD5 6156418f596620b00a3c221baef02476
BLAKE2b-256 9686453aa3949eab6ff54e2405f9cb0c01f756f031c3dc2a6d60a1d40cba5488

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb
MD5 44dfe1df1640e4fe762bedad57cd7165
BLAKE2b-256 e55baaabbfc7060c5c8f0124c5deb5e114a3b413a548bbc64e372c5b5db36165

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.2.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094
MD5 b5fe91363c16001ea30cbd5befbb0555
BLAKE2b-256 ce4cc0f897b580ea59484b4cc96a441fea50333b26675a60a1421bc912268b5f

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027
MD5 d1811f1988d88b00825bc6e943d8e22d
BLAKE2b-256 da18fd35673ba9751eba449d4ce5d24d94e3b612cdbfba79348da71488c0b7ac

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b
MD5 3e753fc4b7c879b29442ee9bab25eddd
BLAKE2b-256 02103f629682dd0b457525c131945329c4e81e2dadeb11256e6ce4c9a1a6fb41

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52
MD5 07658df1de0e1d3721de0aacff4313cd
BLAKE2b-256 e9883870cfa9bef4dffb3a326507f430e6007eeac258ebeef6b76fc542aef66d

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3
MD5 3c04024badd42bfcc68c14f106efa93f
BLAKE2b-256 4f84abdb9f6e22576d89c259401c3234d4755b322539491bbcffadc8bcb120d3

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b
MD5 7f4cf33c634b33f633d4bf47f560a86d
BLAKE2b-256 36ce55f685995110f8a268fdca0f198c9a84fa87b39512830965cc1087af6391

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716
MD5 6d65c6a336cfb69fe4ddd756cad73d55
BLAKE2b-256 72d7de941296e6b09a5c81d3664ad912f1496a0ecdd2f403318e5e35604ff70f

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787
MD5 2818f5a9efcfc3bb6bf657137df26046
BLAKE2b-256 29469f25dc19b359f10c0e52b6bac25d3181eb1f4b4d04c9846a32cf5ea52762

See more details on using hashes here.

File details

Details for the file numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71
MD5 9cd8b5e358f89016f403a6c1a27e7e87
BLAKE2b-256 5ee11816d5d527fa870b260a1c2c5904d060caad7515637bd54f495a5ce13ccd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page