Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.2.5.tar.gz (20.3 MB view details)

Uploaded Source

Built Distributions

numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl (12.9 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.1 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.2.5-cp313-cp313t-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.13t Windows x86-64

numpy-2.2.5-cp313-cp313t-win32.whl (6.4 MB view details)

Uploaded CPython 3.13t Windows x86

numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ x86-64

numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl (14.2 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.2.5-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.2.5-cp313-cp313-win32.whl (6.3 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl (14.2 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.2.5-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.2.5-cp312-cp312-win32.whl (6.3 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl (14.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numpy-2.2.5-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.2.5-cp311-cp311-win32.whl (6.6 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl (14.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.2.5-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.2.5-cp310-cp310-win32.whl (6.6 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.2.5.tar.gz.

File metadata

  • Download URL: numpy-2.2.5.tar.gz
  • Upload date:
  • Size: 20.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5.tar.gz
Algorithm Hash digest
SHA256 a9c0d994680cd991b1cb772e8b297340085466a6fe964bc9d4e80f5e2f43c291
MD5 df2e46b468f9fdf06b13b04eca9a723f
BLAKE2b-256 dcb2ce4b867d8cd9c0ee84938ae1e6a6f7926ebf928c9090d036fc3c6a04f946

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d2e3bdadaba0e040d1e7ab39db73e0afe2c74ae277f5614dad53eadbecbbb169
MD5 8e2e01f02d05e111ef2b104d1b3afad1
BLAKE2b-256 68671175790323026d3337cc285cc9c50eca637d70472b5e622529df74bb8f37

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0255732338c4fdd00996c0421884ea8a3651eea555c3a56b84892b66f696eb70
MD5 5abbeec4ff2add1c46f8779f730c73fa
BLAKE2b-256 ef7f813f51ed86e559ab2afb6a6f33aa6baf8a560097e25e4882a938986c76c2

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 d7543263084a85fbc09c704b515395398d31d6395518446237eac219eab9e55e
MD5 6743ce025de6c245b03ca8511b306503
BLAKE2b-256 a35fbde9238e8e977652a16a4b114ed8aa8bb093d718c706eeecb5f7bfa59572

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b4ea7e1cff6784e58fe281ce7e7f05036b3e1c89c6f922a6bfbc0a7e8768adbe
MD5 7255b93f38e7d54a59d6798182f24c6a
BLAKE2b-256 35e45ef5ef1d4308f96961198b2323bfc7c7afb0ccc0d623b01c79bc87ab496d

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.5-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 d403c84991b5ad291d3809bace5e85f4bbf44a04bdc9a88ed2bb1807b3360bb8
MD5 a8c869efc0888f214239e5c4f0e6acfb
BLAKE2b-256 63beb85e4aa4bf42c6502851b971f1c326d583fcc68227385f92089cf50a7b45

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.2.5-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 1a161c2c79ab30fe4501d5a2bbfe8b162490757cf90b7f05be8b80bc02f7bb8e
MD5 1da753e4127a0bdcdfbfa6639568057e
BLAKE2b-256 297ed0b44e129d038dba453f00d0e29ebd6eaf2f06055d72b95b9947998aca14

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c26843fd58f65da9491165072da2cccc372530681de481ef670dcc8e27cfb066
MD5 c7a8351484f2df9a499c68f1ac73121c
BLAKE2b-256 b1c42e407e85df35b29f79945751b8f8e671057a13a376497d7fb2151ba0d290

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 02f226baeefa68f7d579e213d0f3493496397d8f1cff5e2b222af274c86a552a
MD5 b0ae924e4834155eb5ac159ae611c292
BLAKE2b-256 db543b9f89a943257bc8e187145c6bc0eb8e3d615655f7b14e9b490b053e8149

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55f09e00d4dccd76b179c0f18a44f041e5332fd0e022886ba1c0bbf3ea4a18d0
MD5 22fa9137283f463436d7b20a220071cd
BLAKE2b-256 3941c5377dac0514aaeec69115830a39d905b1882819c8e65d97fc60e177e19e

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8b4c0773b6ada798f51f0f8e30c054d32304ccc6e9c5d93d46cb26f3d385ab19
MD5 a2fb1ed562d2b6da091d980c7486d113
BLAKE2b-256 ef94ece8280cf4218b2bee5cec9567629e61e51b4be501e5c6840ceb593db945

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 352d330048c055ea6db701130abc48a21bec690a8d38f8284e00fab256dc1376
MD5 07b2baf70b84b44ca6924794d9c7e431
BLAKE2b-256 4f6c12d5e760fc62c08eded0394f62039f5a9857f758312bf01632a81d841459

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 97c8425d4e26437e65e1d189d22dff4a079b747ff9c2788057bfb8114ce1e133
MD5 ef6fd6a9c6a07db004a272b82f0ea710
BLAKE2b-256 7522aa11f22dc11ff4ffe4e849d9b63bbe8d4ac6d5fae85ddaa67dfe43be3e76

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8dfa94b6a4374e7851bbb6f35e6ded2120b752b063e6acdd3157e4d2bb922eba
MD5 17018c7c259ae81cf2ca4f58523d7d1c
BLAKE2b-256 ff7719c5e62d55bff507a18c3cdff82e94fe174957bad25860a991cac719d3ab

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e8b025c351b9f0e8b5436cf28a07fa4ac0204d67b38f01433ac7f9b870fa38c6
MD5 d315521ec7275d0341787f2450e57e55
BLAKE2b-256 7956be8b85a9f2adb688e7ded6324e20149a03541d2b3297c3ffc1a73f46dedb

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.5-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 d8882a829fd779f0f43998e931c466802a77ca1ee0fe25a3abe50278616b1471
MD5 2e5728a9e5c6405d3a22138e4dd7019f
BLAKE2b-256 13ae72e6276feb9ef06787365b05915bfdb057d01fceb4a43cb80978e518d79b

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.2.5-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 c8b82a55ef86a2d8e81b63da85e55f5537d2157165be1cb2ce7cfa57b6aef38b
MD5 59bb7e1acb81fc4a02c3b791e110f01e
BLAKE2b-256 f84cb32a17a46f0ffbde8cc82df6d3daeaf4f552e346df143e1b188a701a8f09

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 54088a5a147ab71a8e7fdfd8c3601972751ded0739c6b696ad9cb0343e21ab73
MD5 d258ba55c9a3936fa0c113cac8bbc0cc
BLAKE2b-256 a34540f4135341850df48f8edcf949cf47b523c404b712774f8855a64c96ef29

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a4cbdef3ddf777423060c6f81b5694bad2dc9675f110c4b2a60dc0181543fac7
MD5 ab3ad3390396552f76160139cc528784
BLAKE2b-256 bf9b4cc171a0acbe4666f7775cfd21d4eb6bb1d36d3a0431f48a73e9212d2278

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ba321813a00e508d5421104464510cc962a6f791aa2fca1c97b1e65027da80d
MD5 62c1cf7de0327546f3a1e3852de640d3
BLAKE2b-256 aafcebfd32c3e124e6a1043e19c0ab0769818aa69050ce5589b63d05ff185526

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d14b17b9be5f9c9301f43d2e2a4886a33b53f4e6fdf9ca2f4cc60aeeee76372
MD5 6062cf707b8bc07a1600af0991a0a88e
BLAKE2b-256 ea27b80da6c762394c8ee516b74c1f686fcd16c8f23b14de57ba0cad7349d1d2

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 4520caa3807c1ceb005d125a75e715567806fed67e315cea619d5ec6e75a4191
MD5 0ca38aa51874b9252a2c9d85f81dcd07
BLAKE2b-256 e5e983e7a9432378dde5802651307ae5e9ea07bb72b416728202218cd4da2801

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 261a1ef047751bb02f29dfe337230b5882b54521ca121fc7f62668133cb119c9
MD5 00c4938d67fd5b658ad92ac26fbe9cab
BLAKE2b-256 be6572f3186b6050bbfe9c43cb81f9df59ae63603491d36179cf7a7c8d216758

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47f9ed103af0bc63182609044b0490747e03bd20a67e391192dde119bf43d52f
MD5 70bcb93e55ff0f6602636602e0834607
BLAKE2b-256 7ee4a6a9f4537542912ec513185396fce52cdd45bdcf3e9d921ab02a93ca5aa9

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 059b51b658f4414fff78c6d7b1b4e18283ab5fa56d270ff212d5ba0c561846f4
MD5 b2cf059c831cbcfdb4044613a1e5bc8d
BLAKE2b-256 e2a00aa7f0f4509a2e07bd7a509042967c2fab635690d4f48c6c7b3afd4f448c

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ced69262a8278547e63409b2653b372bf4baff0870c57efa76c5703fd6543282
MD5 069b832aa15b6a815497135e7fa8cae8
BLAKE2b-256 8b094ffb4d6cfe7ca6707336187951992bd8a8b9142cf345d87ab858d2d7636a

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.2.5-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 0cd48122a6b7eab8f06404805b1bd5856200e3ed6f8a1b9a194f9d9054631beb
MD5 bf469fe048fa4ed75a5d8725297e283a
BLAKE2b-256 ec8736801f4dc2623d76a0a3835975524a84bd2b18fe0f8835d45c8eae2f9ff2

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5a0ac90e46fdb5649ab6369d1ab6104bfe5854ab19b645bf5cda0127a13034ae
MD5 d31d443270c76b7238ece2f87b048d21
BLAKE2b-256 801f2b6fcd636e848053f5b57712a7d1880b1565eec35a637fdfd0a30d5e738d

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 abe38cd8381245a7f49967a6010e77dbf3680bd3627c0fe4362dd693b404c7f8
MD5 e363e0d8c116522d55b0ddd0cbf2de67
BLAKE2b-256 2d104dec9184a5d74ba9867c6f7d1e9f2e0fb5fe96ff2bf50bb6f342d64f2003

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a801fef99668f309b88640e28d261991bfad9617c27beda4a3aec4f217ea073
MD5 c80a2d8aab1a4d6a66f3fca2f0744744
BLAKE2b-256 b0d97c338b923c53d431bc837b5b787052fef9ae68a56fe91e325aac0d48226e

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d75f338f5f79ee23548b03d801d28a505198297534f62416391857ea0479571
MD5 4562513ff2f1e3f31d66b8e435000141
BLAKE2b-256 a0930f7a75c1ff02d4b76df35079676b3b2719fcdfb39abdf44c8b33f43ef37d

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 2c1a1c6ccce4022383583a6ded7bbcda22fc635eb4eb1e0a053336425ed36dfa
MD5 179dfa545c32c44b77cf8db3b973785f
BLAKE2b-256 04b3d522672b9e3d28e26e1613de7675b441bbd1eaca75db95680635dd158c67

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 47834cde750d3c9f4e52c6ca28a7361859fcaf52695c7dc3cc1a720b8922683e
MD5 c31c872e0fa8df5ed7f91882621a925f
BLAKE2b-256 2b0b5ca264641d0e7b14393313304da48b225d15d471250376f3fbdb1a2be603

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec31367fd6a255dc8de4772bd1658c3e926d8e860a0b6e922b615e532d320ddc
MD5 68dc4298cad9405ad30cfb723be4ae48
BLAKE2b-256 1203d443c278348371b20d830af155ff2079acad6a9e60279fac2b41dbbb73d8

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ee461a4eaab4f165b68780a6a1af95fb23a29932be7569b9fab666c407969051
MD5 801b11bb546aac2d92d7b3d5d6c90e86
BLAKE2b-256 e2f71fd4ff108cd9d7ef929b8882692e23665dc9c23feecafbb9c6b80f4ec583

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b13f04968b46ad705f7c8a80122a42ae8f620536ea38cf4bdd374302926424dd
MD5 b7d5fdd23057c58d15c84eef6bfedb55
BLAKE2b-256 98890c93baaf0094bdaaaa0536fe61a27b1dce8a505fa262a865ec142208cfe9

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.2.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f5045039100ed58fa817a6227a356240ea1b9a1bc141018864c306c1a16d4175
MD5 73344e05a6fec0b38183363b4a026252
BLAKE2b-256 b156783237243d4395c6dd741cf16eeb1a9035ee3d4310900e6b17e875d1b201

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906
MD5 a1e70be013820f92dbfd4796fc4044bb
BLAKE2b-256 98d94ccd8fd6410f7bf2d312cbc98892e0e43c2fcdd1deae293aeb0a93b18071

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 aa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be
MD5 7b4b1afd412149a9af7c25d7346fade8
BLAKE2b-256 6af03f741863f29e128f4fcfdb99253cc971406b402b4584663710ee07f5f7eb

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b
MD5 a43b608ad15ebdc0960611497205d598
BLAKE2b-256 adc91bf6ada582eebcbe8978f5feb26584cd2b39f94ededeea034ca8f84af8c8

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610
MD5 0bf4e457c612e565420e135458e70fe0
BLAKE2b-256 e532a66db7a5c8b5301ec329ab36d0ecca23f5e18907f43dbd593c8ec326d57c

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54
MD5 4febdec973c4405fd08ef35e0c130de1
BLAKE2b-256 2517814515fdd545b07306eaee552b65c765035ea302d17de1b9cb50852d2452

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d
MD5 ff0c736c60be96506806061ace2251a1
BLAKE2b-256 0e65937cdf238ef6ac54ff749c0f66d9ee2b03646034c205cea9b6c51f2f3ad1

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda
MD5 0d002c733bb02debe0b15de5ba872d1e
BLAKE2b-256 8132dd1f7084f5c10b2caad778258fdaeedd7fbd8afcd2510672811e6138dfac

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b
MD5 58532622d7eff69a3c71c1ae89dea070
BLAKE2b-256 f5fbe4e4c254ba40e8f0c78218f9e86304628c75b6900509b601c8433bdb5da7

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7
MD5 0b17fbbf584785f675f1c5b24a00ff93
BLAKE2b-256 b6f5467ca8675c7e6c567f571d8db942cc10a87588bd9e20a909d8af4171edda

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.2.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88
MD5 c143f352206cec535b41b6b1d34c5898
BLAKE2b-256 6bec5b407bab82f10c65af5a5fe754728df03f960fd44d27c036b61f7b3ef255

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1
MD5 97efde6443da8f9280a5fc2614a087e5
BLAKE2b-256 5018f53710a19042911c7aca824afe97c203728a34b8cf123e2d94621a12edc3

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c
MD5 6ebdc80b54b008a10575e5d7bbb613f5
BLAKE2b-256 04abc3c14f25ddaecd6fc58a34858f6a93a21eea6c266ba162fa99f3d0de12ac

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57
MD5 146c83a5b8099d8d2607392b2ef7fedf
BLAKE2b-256 c270fed13c70aabe7049368553e81d7ca40f305f305800a007a956d7cd2e5476

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3
MD5 72bfc1f98238a8e4ba08999e61111e0e
BLAKE2b-256 dca8c290394be346d4e7b48a40baf292626fd96ec56a6398ace4c25d9079bc6a

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 eb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba
MD5 a5511a995c0f79a8b9a81f2b50e9f692
BLAKE2b-256 a258d5d70ebdac82b3a6ddf409b3749ca5786636e50fd64d60edb46442af6838

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f
MD5 e82c8fa47a65bb5c2c83295f549dab12
BLAKE2b-256 f8596e5b011f553c37b008bd115c7ba7106a18f372588fbb1b430b7a5d2c41ce

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a
MD5 bcf9f4e768b070e17b2635f422a6e27d
BLAKE2b-256 38e4db91349d4079cd15c02ff3b4b8882a529991d6aca077db198a2f2a670406

See more details on using hashes here.

File details

Details for the file numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26
MD5 3a5d0889d6d7951f44bc6f7a03fa30c6
BLAKE2b-256 ef4e3d9e6d16237c2aa5485695f0626cbba82f6481efca2e9132368dea3b885e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page