Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard Typing

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.3.2.tar.gz (20.5 MB view details)

Uploaded Source

Built Distributions

numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whl (13.0 MB view details)

Uploaded PyPyWindows x86-64

numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.8 MB view details)

Uploaded PyPymanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (14.4 MB view details)

Uploaded PyPymanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPymacOS 14.0+ x86-64

numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded PyPymacOS 14.0+ ARM64

numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded PyPymacOS 11.0+ ARM64

numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl (21.1 MB view details)

Uploaded PyPymacOS 10.15+ x86-64

numpy-2.3.2-cp314-cp314t-win_arm64.whl (10.5 MB view details)

Uploaded CPython 3.14tWindows ARM64

numpy-2.3.2-cp314-cp314t-win_amd64.whl (13.1 MB view details)

Uploaded CPython 3.14tWindows x86-64

numpy-2.3.2-cp314-cp314t-win32.whl (6.5 MB view details)

Uploaded CPython 3.14tWindows x86

numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl (16.1 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ ARM64

numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.14tmacOS 14.0+ x86-64

numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.14tmacOS 14.0+ ARM64

numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.14tmacOS 10.13+ x86-64

numpy-2.3.2-cp314-cp314-win_arm64.whl (10.5 MB view details)

Uploaded CPython 3.14Windows ARM64

numpy-2.3.2-cp314-cp314-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.14Windows x86-64

numpy-2.3.2-cp314-cp314-win32.whl (6.4 MB view details)

Uploaded CPython 3.14Windows x86

numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whl (16.1 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.14macOS 14.0+ x86-64

numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.14macOS 14.0+ ARM64

numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl (14.2 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.14macOS 10.13+ x86-64

numpy-2.3.2-cp313-cp313t-win_arm64.whl (10.3 MB view details)

Uploaded CPython 3.13tWindows ARM64

numpy-2.3.2-cp313-cp313t-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.13tWindows x86-64

numpy-2.3.2-cp313-cp313t-win32.whl (6.4 MB view details)

Uploaded CPython 3.13tWindows x86

numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl (16.1 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13tmacOS 14.0+ x86-64

numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13tmacOS 14.0+ ARM64

numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.13tmacOS 10.13+ x86-64

numpy-2.3.2-cp313-cp313-win_arm64.whl (10.2 MB view details)

Uploaded CPython 3.13Windows ARM64

numpy-2.3.2-cp313-cp313-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.13Windows x86-64

numpy-2.3.2-cp313-cp313-win32.whl (6.3 MB view details)

Uploaded CPython 3.13Windows x86

numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl (16.1 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13macOS 14.0+ x86-64

numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl (14.2 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

numpy-2.3.2-cp312-cp312-win_arm64.whl (10.2 MB view details)

Uploaded CPython 3.12Windows ARM64

numpy-2.3.2-cp312-cp312-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.12Windows x86-64

numpy-2.3.2-cp312-cp312-win32.whl (6.3 MB view details)

Uploaded CPython 3.12Windows x86

numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl (16.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12macOS 14.0+ x86-64

numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl (14.2 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

numpy-2.3.2-cp311-cp311-win_arm64.whl (10.5 MB view details)

Uploaded CPython 3.11Windows ARM64

numpy-2.3.2-cp311-cp311-win_amd64.whl (13.1 MB view details)

Uploaded CPython 3.11Windows x86-64

numpy-2.3.2-cp311-cp311-win32.whl (6.6 MB view details)

Uploaded CPython 3.11Windows x86

numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl (16.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (14.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11macOS 14.0+ x86-64

numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whl (14.5 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

File details

Details for the file numpy-2.3.2.tar.gz.

File metadata

  • Download URL: numpy-2.3.2.tar.gz
  • Upload date:
  • Size: 20.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2.tar.gz
Algorithm Hash digest
SHA256 e0486a11ec30cdecb53f184d496d1c6a20786c81e55e41640270130056f8ee48
MD5 f8d3d3b3ecd2b6e98889e88f6bbdc1a3
BLAKE2b-256 377d3fec4199c5ffb892bed55cff901e4f39a58c81df9c44c280499e92cad264

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6936aff90dda378c09bea075af0d9c675fe3a977a9d2402f95a87f440f59f619
MD5 5d92d6c39f2f0b28149ed15437b13cf7
BLAKE2b-256 78e36690b3f85a05506733c7e90b577e4762517404ea78bab2ca3a5cb1aeb78d

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 aa098a5ab53fa407fded5870865c6275a5cd4101cfdef8d6fafc48286a96e981
MD5 baae8d6875e1de409ffef875896c4b4f
BLAKE2b-256 8b958023e87cbea31a750a6c00ff9427d65ebc5fef104a136bfa69f76266d614

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8446acd11fe3dc1830568c941d44449fd5cb83068e5c70bd5a470d323d448296
MD5 6d59903ecd732d53dd230ca59cdc2c34
BLAKE2b-256 9bc9142c1e03f199d202da8e980c2496213509291b6024fd2735ad28ae7065c7

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 2c3271cc4097beb5a60f010bcc1cc204b300bb3eafb4399376418a83a1c6373c
MD5 67db17064907cd22a74676b50de1ab6d
BLAKE2b-256 48b46500b24d278e15dd796f43824e69939d00981d37d9779e32499e823aa0aa

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 69779198d9caee6e547adb933941ed7520f896fd9656834c300bdf4dd8642712
MD5 82077182e608a0d366eba700902463b5
BLAKE2b-256 838527280c7f34fcd305c2209c0cdca4d70775e4859a9eaa92f850087f8dea50

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71669b5daae692189540cffc4c439468d35a3f84f0c88b078ecd94337f6cb0ec
MD5 7e46ebe46530596019ae6b5db8a7a564
BLAKE2b-256 9f57cdd5eac00dd5f137277355c318a955c0d8fb8aa486020c22afd305f8b88f

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 14a91ebac98813a49bc6aa1a0dfc09513dcec1d97eaf31ca21a87221a1cdcb15
MD5 e240eed2fc098f7a0ae9813abead8a05
BLAKE2b-256 cfea50ebc91d28b275b23b7128ef25c3d08152bc4068f42742867e07a870a42a

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp314-cp314t-win_arm64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.14t, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-win_arm64.whl
Algorithm Hash digest
SHA256 092aeb3449833ea9c0bf0089d70c29ae480685dd2377ec9cdbbb620257f84631
MD5 848c4c409b643c2b42c431f51b310095
BLAKE2b-256 c19e1652778bce745a67b5fe05adde60ed362d38eb17d919a540e813d30f6874

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 13.1 MB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 087ffc25890d89a43536f75c5fe8770922008758e8eeeef61733957041ed2f9b
MD5 97713f41a5d4a08e8ed3d629d07678d3
BLAKE2b-256 eb463dbaf0ae7c17cdc46b9f662c56da2054887b8d9e737c1476f335c83d33db

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-win32.whl.

File metadata

  • Download URL: numpy-2.3.2-cp314-cp314t-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.14t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-win32.whl
Algorithm Hash digest
SHA256 6f1ae3dcb840edccc45af496f312528c15b1f79ac318169d094e85e4bb35fdf1
MD5 66125a7e4e311fc2dedfa8c25ee577f2
BLAKE2b-256 14ba5b5c9978c4bb161034148ade2de9db44ec316fab89ce8c400db0e0c81f86

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 122bf5ed9a0221b3419672493878ba4967121514b1d7d4656a7580cd11dddcbf
MD5 5c8093e713bd7e5f8512458d53fefeed
BLAKE2b-256 6eae7b1476a1f4d6a48bc669b8deb09939c56dd2a439db1ab03017844374fb67

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 76c3e9501ceb50b2ff3824c3589d5d1ab4ac857b0ee3f8f49629d0de55ecf7c2
MD5 cd1e335e2a8437339475db12ee30f26d
BLAKE2b-256 33c333b56b0e47e604af2c7cd065edca892d180f5899599b76830652875249a3

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cefc2219baa48e468e3db7e706305fcd0c095534a192a08f31e98d83a7d45fb0
MD5 bc77a7f5826bb0a38154d31d8444abb7
BLAKE2b-256 11e3285142fcff8721e0c99b51686426165059874c150ea9ab898e12a492e291

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f92d6c2a8535dc4fe4419562294ff957f83a16ebdec66df0805e473ffaad8bd0
MD5 0e0b26b34024f24a5f59809a1778ace0
BLAKE2b-256 15b0d004bcd56c2c5e0500ffc65385eb6d569ffd3363cb5e593ae742749b2daa

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 9c144440db4bf3bb6372d2c3e49834cc0ff7bb4c24975ab33e01199e645416f2
MD5 351f35dd00bfb35e6cad2447a14c7cdf
BLAKE2b-256 342ee71b2d6dad075271e7079db776196829019b90ce3ece5c69639e4f6fdc44

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 0a4f2021a6da53a0d580d6ef5db29947025ae8b35b3250141805ea9a32bbe86b
MD5 6ae336ac461d5d89811c8a236b442842
BLAKE2b-256 4d73d8326c442cd428d47a067070c3ac6cc3b651a6e53613a1668342a12d4479

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 293b2192c6bcce487dbc6326de5853787f870aeb6c43f8f9c6496db5b1781e45
MD5 b4d4ce3339cb9f0b0f2b339db803f39c
BLAKE2b-256 fe6d60e8247564a72426570d0e0ea1151b95ce5bd2f1597bb878a18d32aec855

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4d002ecf7c9b53240be3bb69d80f86ddbd34078bae04d87be81c1f58466f264e
MD5 2306e8b73fcd2d46116c6a95034e4d3a
BLAKE2b-256 8b3e075752b79140b78ddfc9c0a1634d234cfdbc6f9bbbfa6b7504e445ad7d19

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp314-cp314-win_arm64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.14, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp314-cp314-win_arm64.whl
Algorithm Hash digest
SHA256 2738534837c6a1d0c39340a190177d7d66fdf432894f469728da901f8f6dc910
MD5 851529ffdf2b0d4b66eb1ac99c24da3e
BLAKE2b-256 0e0f0dc44007c70b1007c1cef86b06986a3812dd7106d8f946c09cfa75782556

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 b9d0878b21e3918d76d2209c924ebb272340da1fb51abc00f986c258cd5e957b
MD5 d419eb806a6f5debb366d4bcf0f5bde0
BLAKE2b-256 119eb4c24a6b8467b61aced5c8dc7dcfce23621baa2e17f661edb2444a418040

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-win32.whl.

File metadata

  • Download URL: numpy-2.3.2-cp314-cp314-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.14, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp314-cp314-win32.whl
Algorithm Hash digest
SHA256 7d6e390423cc1f76e1b8108c9b6889d20a7a1f59d9a60cac4a050fa734d6c1e2
MD5 c02218de0d0666769c91513eafaf251f
BLAKE2b-256 14144b4fd3efb0837ed252d0f583c5c35a75121038a8c4e065f2c259be06d2d8

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b5e40e80299607f597e1a8a247ff8d71d79c5b52baa11cc1cce30aa92d2da6e0
MD5 f2fda217bec39ede344b42fef2cbd9e5
BLAKE2b-256 4c4182e2c68aff2a0c9bf315e47d61951099fed65d8cb2c8d9dc388cb87e947e

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 095737ed986e00393ec18ec0b21b47c22889ae4b0cd2d5e88342e08b01141f58
MD5 bd44ab38b53a4b5b6130b6f01ffaf5fa
BLAKE2b-256 9bd19d9f2c8ea399cc05cfff8a7437453bd4e7d894373a93cdc46361bbb49a7d

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fed5527c4cf10f16c6d0b6bee1f89958bccb0ad2522c8cadc2efd318bcd545f5
MD5 1fe080566baca813e6ac4635011a408a
BLAKE2b-256 5df977c07d94bf110a916b17210fac38680ed8734c236bfed9982fd8524a7b47

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 af58de8745f7fa9ca1c0c7c943616c6fe28e75d0c81f5c295810e3c83b5be92f
MD5 813e47e3c07cd28bf0458a1e513d6619
BLAKE2b-256 c443f12b2ade99199e39c73ad182f103f9d9791f48d885c600c8e05927865baf

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 8dc082ea901a62edb8f59713c6a7e28a85daddcb67454c839de57656478f5b19
MD5 4d4098888f19de85dd18646c2f955cd2
BLAKE2b-256 9ed26f5e6826abd6bca52392ed88fe44a4b52aacb60567ac3bc86c67834c3a56

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 87c930d52f45df092f7578889711a0768094debf73cfcde105e2d66954358125
MD5 871631874c6839719d1c1b3ad81835cd
BLAKE2b-256 e476b3d6f414f4eca568f469ac112a3b510938d892bc5a6c190cb883af080b77

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 546aaf78e81b4081b2eba1d105c3b34064783027a06b3ab20b6eba21fb64132b
MD5 40d04ac18cd9db3c380224d3d5607770
BLAKE2b-256 80db984bea9d4ddf7112a04cfdfb22b1050af5757864cfffe8e09e44b7f11a10

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 448a66d052d0cf14ce9865d159bfc403282c9bc7bb2a31b03cc18b651eca8b1a
MD5 2b99d343001495b182027843bf2148b2
BLAKE2b-256 c97c7659048aaf498f7611b783e000c7268fcc4dcf0ce21cd10aad7b2e8f9591

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp313-cp313t-win_arm64.whl
  • Upload date:
  • Size: 10.3 MB
  • Tags: CPython 3.13t, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-win_arm64.whl
Algorithm Hash digest
SHA256 72c6df2267e926a6d5286b0a6d556ebe49eae261062059317837fda12ddf0c1a
MD5 29e65f132c4a916214a0e82bca214717
BLAKE2b-256 e9ed13542dd59c104d5e654dfa2ac282c199ba64846a74c2c4bcdbc3a0f75df1

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 72dbebb2dcc8305c431b2836bcc66af967df91be793d63a24e3d9b741374c450
MD5 c6c8a1a2e94a9fc2dad9d161a6666e54
BLAKE2b-256 0bba0937d66d05204d8f28630c9c60bc3eda68824abde4cf756c4d6aad03b0c6

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.3.2-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 c771cfac34a4f2c0de8e8c97312d07d64fd8f8ed45bc9f5726a7e947270152b5
MD5 82feb6822f2cf04a9edf38cf7f7d4806
BLAKE2b-256 40f32fe6066b8d07c3685509bc24d56386534c008b462a488b7f503ba82b8923

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 07b62978075b67eee4065b166d000d457c82a1efe726cce608b9db9dd66a73a5
MD5 e71ba272e9db74bc753ca056e76fdf5b
BLAKE2b-256 9a14ecede608ea73e58267fd7cb78f42341b3b37ba576e778a1a06baffbe585c

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 27c9f90e7481275c7800dc9c24b7cc40ace3fdb970ae4d21eaff983a32f70c91
MD5 11ce971fe997bf5c0784516db85891ff
BLAKE2b-256 943006cd055e24cb6c38e5989a9e747042b4e723535758e6153f11afea88c01b

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a3ef07ec8cbc8fc9e369c8dcd52019510c12da4de81367d8b20bc692aa07573a
MD5 96412f8c9687d468e260aacdfb9cca02
BLAKE2b-256 cf9036be0865f16dfed20f4bc7f75235b963d5939707d4b591f086777412ff7b

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 de6ea4e5a65d5a90c7d286ddff2b87f3f4ad61faa3db8dabe936b34c2275b6f8
MD5 745bb6930958f4d7980cd705621abc25
BLAKE2b-256 19ea0731efe2c9073ccca5698ef6a8c3667c4cf4eea53fcdcd0b50140aba03bc

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 a9f66e7d2b2d7712410d3bc5684149040ef5f19856f20277cd17ea83e5006286
MD5 d2d8d43c535184095550420169858b90
BLAKE2b-256 7d8e74bc18078fff03192d4032cfa99d5a5ca937807136d6f5790ce07ca53515

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 754d6755d9a7588bdc6ac47dc4ee97867271b17cee39cb87aef079574366db0a
MD5 b0c1c28add9716f7cee433d53fb43067
BLAKE2b-256 f662ff1e512cdbb829b80a6bd08318a58698867bca0ca2499d101b4af063ee97

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 508b0eada3eded10a3b55725b40806a4b855961040180028f52580c4729916a2
MD5 0338f2a78981d84d84e5f693ed6112d5
BLAKE2b-256 1f2d624f2ce4a5df52628b4ccd16a4f9437b37c35f4f8a50d00e962aae6efd7a

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4e6ecfeddfa83b02318f4d84acf15fbdbf9ded18e46989a15a8b6995dfbf85ab
MD5 7169baf4160b9a75790650cef23a73e1
BLAKE2b-256 80238278f40282d10c3f258ec3ff1b103d4994bcad78b0cba9208317f6bb73da

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 b05a89f2fb84d21235f93de47129dd4f11c16f64c87c33f5e284e6a3a54e43f2
MD5 9b5adab8ee4eb97ccf90d73d63671db4
BLAKE2b-256 65854ea455c9040a12595fb6c43f2c217257c7b52dd0ba332c6a6c1d28b289fe

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 c63d95dc9d67b676e9108fe0d2182987ccb0f11933c1e8959f42fa0da8d4fa56
MD5 47a7326544ce192df844b3e9750c7704
BLAKE2b-256 aa6fa428fd1cb7ed39b4280d057720fed5121b0d7754fd2a9768640160f5517b

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.3.2-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 906a30249315f9c8e17b085cc5f87d3f369b35fedd0051d4a84686967bdbbd0b
MD5 09f2fdeb35d952751ba269ca5fa77e7a
BLAKE2b-256 ae117c546fcf42145f29b71e4d6f429e96d8d68e5a7ba1830b2e68d7418f0bbd

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a7af9ed2aa9ec5950daf05bb11abc4076a108bd3c7db9aa7251d5f107079b6a6
MD5 c4607ea441320a0078d942ca21ef2411
BLAKE2b-256 577ce5725d99a9133b9813fcf148d3f858df98511686e853169dbaf63aec6097

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 66459dccc65d8ec98cc7df61307b64bf9e08101f9598755d42d8ae65d9a7a6ee
MD5 5c53a2c915d177b7c305c0386ba21b43
BLAKE2b-256 245a84ae8dca9c9a4c592fe11340b36a86ffa9fd3e40513198daf8a97839345c

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 938065908d1d869c7d75d8ec45f735a034771c6ea07088867f713d1cd3bbbe4f
MD5 24c4e95f0a615356787e2920378e5c6f
BLAKE2b-256 1d0f571b2c7a3833ae419fe69ff7b479a78d313581785203cc70a8db90121b9a

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5ad4ebcb683a1f99f4f392cc522ee20a18b2bb12a2c1c42c3d48d5a1adc9d3d2
MD5 ee68f94ec5f9c0c7f9423d7329bc085e
BLAKE2b-256 34fa87ff7f25b3c4ce9085a62554460b7db686fef1e0207e8977795c7b7d7ba1

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 11e58218c0c46c80509186e460d79fbdc9ca1eb8d8aee39d8f2dc768eb781089
MD5 1809c7adafae6492741864cf4dda7d1e
BLAKE2b-256 9f763e6880fef4420179309dba72a8c11f6166c431cf6dee54c577af8906f914

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 dd937f088a2df683cbb79dda9a772b62a3e5a8a7e76690612c2737f38c6ef1b6
MD5 3c7236116911c5c19de0091d7ac81f65
BLAKE2b-256 7845d4698c182895af189c463fc91d70805d455a227261d950e4e0f1310c2550

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 efc81393f25f14d11c9d161e46e6ee348637c0a1e8a54bf9dedc472a3fae993b
MD5 9a89327ef3550581017ea6e2a47c1a8e
BLAKE2b-256 204ec116466d22acaf4573e58421c956c6076dc526e24a6be0903219775d862e

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c8d9727f5316a256425892b043736d63e89ed15bbfe6556c5ff4d9d4448ff3b3
MD5 c1e323fa1986bc99ae96c46126a30f93
BLAKE2b-256 1cc0c6bb172c916b00700ed3bf71cb56175fd1f7dbecebf8353545d0b5519f6c

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 ee807923782faaf60d0d7331f5e86da7d5e3079e28b291973c545476c2b00d07
MD5 05755e8c591b1ac2fff05a06d76ac414
BLAKE2b-256 54cd7b5f49d5d78db7badab22d8323c1b6ae458fbf86c4fdfa194ab3cd4eb39b

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9e196ade2400c0c737d93465327d1ae7c06c7cb8a1756121ebf54b06ca183c7f
MD5 3ba0b657682fc54d9433b4d7244c9264
BLAKE2b-256 7c2f244643a5ce54a94f0a9a2ab578189c061e4a87c002e037b0829dd77293b6

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.3.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 d95f59afe7f808c103be692175008bab926b59309ade3e6d25009e9a171f7036
MD5 909e05dcd1164cc02d5fccc1cc6c9ca6
BLAKE2b-256 a14f9950e44c5a11636f4a3af6e825ec23003475cc9a466edb7a759ed3ea63bd

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fc927d7f289d14f5e037be917539620603294454130b6de200091e23d27dc9be
MD5 ef392070c44709321d7f87ab15bbd674
BLAKE2b-256 8b5d41c4ef8404caaa7f05ed1cfb06afe16a25895260eacbd29b4d84dff2920b

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 103ea7063fa624af04a791c39f97070bf93b96d7af7eb23530cd087dc8dbe9dc
MD5 5d0128aa0f6aa3a5122364a727a72eba
BLAKE2b-256 f6a7af813a7b4f9a42f498dde8a4c6fcbff8100eed00182cc91dbaf095645f38

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8145dd6d10df13c559d1e4314df29695613575183fa2e2d11fac4c208c8a1f73
MD5 f3bc10b89911c09777c4c5d9752f35b0
BLAKE2b-256 59eff96536f1df42c668cbacb727a8c6da7afc9c05ece6d558927fb1722693e1

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 572d5512df5470f50ada8d1972c5f1082d9a0b7aa5944db8084077570cf98370
MD5 5fdc228f15ec5de78b89c7aa4c137019
BLAKE2b-256 91baf4ebf257f08affa464fe6036e13f2bf9d4642a40228781dc1235da81be9f

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 3dcf02866b977a38ba3ec10215220609ab9667378a9e2150615673f3ffd6c73b
MD5 e703fab1c371fd27389401caa34a5cbd
BLAKE2b-256 2b21376257efcbf63e624250717e82b4fae93d60178f09eb03ed766dbb48ec9c

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8b1224a734cd509f70816455c3cffe13a4f599b1bf7130f913ba0e2c0b2006c0
MD5 8003e8df1badaffee163a603bf05656b
BLAKE2b-256 2b53102c6122db45a62aa20d1b18c9986f67e6b97e0d6fbc1ae13e3e4c84430c

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2f4f0215edb189048a3c03bd5b19345bdfa7b45a7a6f72ae5945d2a28272727f
MD5 4af1ffb81bdec235aef1b9bdf7c1566d
BLAKE2b-256 bc96e7b533ea5740641dd62b07a790af5d9d8fec36000b8e2d0472bd7574105f

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bc3186bea41fae9d8e90c2b4fb5f0a1f5a690682da79b92574d63f56b529080b
MD5 307fc28e0c630dbc5a6ff4051ee9ec6c
BLAKE2b-256 006d745dd1c1c5c284d17725e5c802ca4d45cfc6803519d777f087b71c9f4069

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 4209f874d45f921bde2cff1ffcd8a3695f545ad2ffbef6d3d3c6768162efab89
MD5 c80f2a1c4c829ccb6745a6d0803b7177
BLAKE2b-256 13322c7979d39dafb2a25087e12310fc7f3b9d3c7d960df4f4bc97955ae0ce1d

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 13.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 240259d6564f1c65424bcd10f435145a7644a65a6811cfc3201c4a429ba79170
MD5 09b023f808432e60633e36a13630dc13
BLAKE2b-256 d5030eade211c504bda872a594f045f98ddcc6caef2b7c63610946845e304d3f

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.3.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for numpy-2.3.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 4ae6863868aaee2f57503c7a5052b3a2807cf7a3914475e637a0ecd366ced220
MD5 ad090139b8b872a9157b92c840566c5e
BLAKE2b-256 a7172cf60fd3e6a61d006778735edf67a222787a8c1a7842aed43ef96d777446

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fb1752a3bb9a3ad2d6b090b88a9a0ae1cd6f004ef95f75825e2f382c183b2097
MD5 4dd3469970dbfba60dad41b9923c5a5a
BLAKE2b-256 b501dd67cf511850bd7aefd6347aaae0956ed415abea741ae107834aae7d6d4e

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1f91e5c028504660d606340a084db4b216567ded1056ea2b4be4f9d10b67197f
MD5 6acefa06c38bc616352b76174d4f19d2
BLAKE2b-256 a9ec2f6c45c3484cc159621ea8fc000ac5a86f1575f090cac78ac27193ce82cd

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 20b8200721840f5621b7bd03f8dcd78de33ec522fc40dc2641aa09537df010c3
MD5 085e1ff7746d327a1320672ab86966c3
BLAKE2b-256 c8b0fbeee3000a51ebf7222016e2939b5c5ecf8000a19555d04a18f1e02521b8

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f75018be4980a7324edc5930fe39aa391d5734531b1926968605416ff58c332d
MD5 9a864a280798829cc522521bc5d9c7e2
BLAKE2b-256 17f2e4d72e6bc5ff01e2ab613dc198d560714971900c03674b41947e38606502

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 cbc95b3813920145032412f7e33d12080f11dc776262df1712e1638207dde9e8
MD5 658950eb37e19b42920635ee60830a1d
BLAKE2b-256 49ce055274fcba4107c022b2113a213c7287346563f48d62e8d2a5176ad93217

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f0a1a8476ad77a228e41619af2fa9505cf69df928e9aaa165746584ea17fed2b
MD5 f5c485a43210eb3541b254c8c9d6ac9e
BLAKE2b-256 b713e792d7209261afb0c9f4759ffef6135b35c77c6349a151f488f531d13595

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a0e27186e781a69959d0230dd9909b5e26024f8da10683bd6344baea1885168
MD5 3dede42d11c843cfacff422f65a80e47
BLAKE2b-256 c42b792b341463fa93fc7e55abbdbe87dac316c5b8cb5e94fb7a59fb6fa0cda5

See more details on using hashes here.

File details

Details for the file numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 852ae5bed3478b92f093e30f785c98e0cb62fa0a939ed057c31716e18a7a22b9
MD5 e35c637ea9fba77eabfdf70e26eaa16d
BLAKE2b-256 96261320083986108998bd487e2931eed2aeedf914b6e8905431487543ec911d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page