Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.2.2.tar.gz (20.2 MB view details)

Uploaded Source

Built Distributions

numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.2.2-cp313-cp313t-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.13t Windows x86-64

numpy-2.2.2-cp313-cp313t-win32.whl (6.3 MB view details)

Uploaded CPython 3.13t Windows x86

numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ x86-64

numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.2.2-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.2.2-cp313-cp313-win32.whl (6.3 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.2.2-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.2.2-cp312-cp312-win32.whl (6.3 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numpy-2.2.2-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.2.2-cp311-cp311-win32.whl (6.6 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.2.2-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.2.2-cp310-cp310-win32.whl (6.6 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl (15.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.2.2.tar.gz.

File metadata

  • Download URL: numpy-2.2.2.tar.gz
  • Upload date:
  • Size: 20.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2.tar.gz
Algorithm Hash digest
SHA256 ed6906f61834d687738d25988ae117683705636936cc605be0bb208b23df4d8f
MD5 ac108586d3aeab9e2d0134b744763eb9
BLAKE2b-256 ecd0c12ddfd3a02274be06ffc71f3efc6d0e457b0409c4481596881e748cb264

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 356ca982c188acbfa6af0d694284d8cf20e95b1c3d0aefa8929376fea9146f60
MD5 0d1108b9060469eb28bb4a4cffa7b98f
BLAKE2b-256 2696deb93f871f401045a684ca08a009382b247d14996d7a94fea6aa43c67b94

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0d4142eb40ca6f94539e4db929410f2a46052a0fe7a2c1c59f6179c39938d2a
MD5 df4c07a48a24621167c12704ba5ac0de
BLAKE2b-256 7c288754b9aee4f97199f9a047f73bb644b5a2014994a6d7b061ba67134a42de

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e9e82dcb3f2ebbc8cb5ce1102d5f1c5ed236bf8a11730fb45ba82e2841ec21df
MD5 fb457bbe2d231e836d2230b06d4706ca
BLAKE2b-256 d13cccd08578dc532a8e6927952339d4a02682b776d5e85be49ed0760308433e

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b0531f0b0e07643eb089df4c509d30d72c9ef40defa53e41363eca8a8cc61495
MD5 f6a93eaebee6f9890a4922571141ecb5
BLAKE2b-256 967e1dd770ee68916ed358991ab62c2cc353ffd98d0b75b901d52183ca28e8bb

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.2-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 97b974d3ba0fb4612b77ed35d7627490e8e3dff56ab41454d9e8b23448940576
MD5 f2b4eab55a963e8cd4c6c1e573c9a59f
BLAKE2b-256 8094cd9e9b04012c015cb6320ab3bf43bc615e248dddfeb163728e800a5d96f0

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.2.2-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 0eec19f8af947a61e968d5429f0bd92fec46d92b0008d0a6685b40d6adf8a4f4
MD5 726b58ec542581c5e46adfd4c5c0fed0
BLAKE2b-256 9503242ae8d7b97f4e0e4ab8dd51231465fb23ed5e802680d629149722e3faf1

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 106397dbbb1896f99e044efc90360d098b3335060375c26aa89c0d8a97c5f648
MD5 59b4b77118f958dd07484686e82b1e7a
BLAKE2b-256 aa2914a177f1a90b8ad8a592ca32124ac06af5eff32889874e53a308f850290f

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 149d1113ac15005652e8d0d3f6fd599360e1a708a4f98e43c9c77834a28238cb
MD5 62f8ef2a5c9e76b0e43851a7bb9c0379
BLAKE2b-256 2cf2f2f8edd62abb4b289f65a7f6d1f3650273af00b91b7267a2431be7f1aec6

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9fad446ad0bc886855ddf5909cbf8cb5d0faa637aaa6277fb4b19ade134ab3c7
MD5 6bb3eb03d400ad708942afbfebd07abc
BLAKE2b-256 e1fb13c58591d0b6294a08cc40fcc6b9552d239d773d520858ae27f39997f2ae

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0bc61b307655d1a7f9f4b043628b9f2b721e80839914ede634e3d485913e1fb2
MD5 289ec3155aa21c5a161b2d61d2cf3c2d
BLAKE2b-256 b16f6531a78e182f194d33ee17e59d67d03d0d5a1ce7f6be7343787828d1bd4a

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 7dca87ca328f5ea7dafc907c5ec100d187911f94825f8700caac0b3f4c384b49
MD5 a09f5c138ad8c87b9692eea99f344a98
BLAKE2b-256 f7ecfe2e91b2642b9d6544518388a441bcd65c904cea38d9ff998e2e8ebf808e

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 41184c416143defa34cc8eb9d070b0a5ba4f13a0fa96a709e20584638254b317
MD5 7b1ddabcb187b18caa52055bb2b2dc67
BLAKE2b-256 6805bfbdf490414a7dbaf65b10c78bc243f312c4553234b6d91c94eb7c4b53c2

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9491100aba630910489c1d0158034e1c9a6546f0b1340f716d522dc103788e39
MD5 01e3f727594a12eee6d0677113525b96
BLAKE2b-256 6aec6ea85b2da9d5dfa1dbb4cb3c76587fc8ddcae580cb1262303ab21c0926c4

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b3482cb7b3325faa5f6bc179649406058253d91ceda359c104dac0ad320e1391
MD5 0acc5069c5ab4fe3ea7c35956636c462
BLAKE2b-256 9f30f23d9876de0f08dceb707c4dcf7f8dd7588266745029debb12a3cdd40be6

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5a8c863ceacae696aff37d1fd636121f1a512117652e5dfb86031c8d84836369
MD5 33dc5bab2d3f752ef00f81021d68cb5a
BLAKE2b-256 56e501106b9291ef1d680f82bc47d0c5b5e26dfed15b0754928e8f856c82c881

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.2.2-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 4dbd80e453bd34bd003b16bd802fac70ad76bd463f81f0c518d1245b1c55e3d9
MD5 6b4d65349c74dd91853a7cc6b5c5786e
BLAKE2b-256 b9a5fbf1f2b54adab31510728edd06a05c1b30839f37cf8c9747cb85831aaf1b

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 57b4012e04cc12b78590a334907e01b3a85efb2107df2b8733ff1ed05fce71de
MD5 53471186fc990eb22e82a0512b310438
BLAKE2b-256 5e6d541717a554a8f56fa75e91886d9b79ade2e595918690eb5d0d3dbd3accb9

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b6fb9c32a91ec32a689ec6410def76443e3c750e7cfc3fb2206b985ffb2b85f0
MD5 9f662eb58b8f711585550d6fdf8afa4f
BLAKE2b-256 d534cd0a735534c29bec7093544b3a509febc9b0df77718a9b41ffb0809c9f46

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0c8854b09bc4de7b041148d8550d3bd712b5c21ff6a8ed308085f190235d7ff
MD5 1c0ecc958a555a8a95c92c1dd7dc2358
BLAKE2b-256 839c96a9ab62274ffafb023f8ee08c88d3d31ee74ca58869f859db6845494fa6

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 250c16b277e3b809ac20d1f590716597481061b514223c7badb7a0f9993c7f84
MD5 773982551185ae327cdefe416e73acfc
BLAKE2b-256 2c03c72474c13772e30e1bc2e558cdffd9123c7872b731263d5648b5c49dd459

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 128c41c085cab8a85dc29e66ed88c05613dccf6bc28b3866cd16050a2f5448be
MD5 2e6247faabf6d0ac0fafaca0bb405ff8
BLAKE2b-256 8df3399c15629d5a0c68ef2aa7621d430b2be22034f01dd7f3c65a9c9666c445

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 22ea3bb552ade325530e72a0c557cdf2dea8914d3a5e1fecf58fa5dbcc6f43cd
MD5 4b866ad895e007005afe8a29837cf7d6
BLAKE2b-256 9d50949ec9cbb28c4b751edfa64503f0913cbfa8d795b4a251e7980f13a8a655

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d0bbe7dd86dca64854f4b6ce2ea5c60b51e36dfd597300057cf473d3615f2369
MD5 7ca0f0e8c8d3d80ec473ec33929c2ae3
BLAKE2b-256 a980d349c3b5ed66bd3cb0214be60c27e32b90a506946857b866838adbe84040

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b208cfd4f5fe34e1535c08983a1a6803fdbc7a1e86cf13dd0c61de0b51a0aadc
MD5 044e86bd65492af34a59e4109fbeed16
BLAKE2b-256 e1fedf5624001f4f5c3e0b78e9017bfab7fdc18a8d3b3d3161da3d64924dd659

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5acea83b801e98541619af398cc0109ff48016955cc0818f478ee9ef1c5c3dcb
MD5 a2340ff05cae7e09f63bfcfd4e75ea87
BLAKE2b-256 fc847f801a42a67b9772a883223a0a1e12069a14626c81a732bd70aac57aebc1

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.2.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 4525b88c11906d5ab1b0ec1f290996c0020dd318af8b49acaa46f198b1ffc283
MD5 3b8689aedff5037cad85b018e2d5e43a
BLAKE2b-256 826e0b84ad3103ffc16d6673e63b5acbe7901b2af96c2837174c6318c98e27ab

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9dd47ff0cb2a656ad69c38da850df3454da88ee9a6fde0ba79acceee0e79daba
MD5 fa5d0d979104456d7c43a183223c8587
BLAKE2b-256 f0d8d8d333ad0d8518d077a21aeea7b7c826eff766a2b1ce1194dea95ca0bacf

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 463247edcee4a5537841d5350bc87fe8e92d7dd0e8c71c995d2c6eecb8208278
MD5 d619047dcaf041b806a7b59ff0a798d5
BLAKE2b-256 d569308f55c0e19d4b5057b5df286c5433822e3c8039ede06d4051d96f1c2c4e

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0349b025e15ea9d05c3d63f9657707a4e1d471128a3b1d876c095f328f8ff7f0
MD5 9c273da8438391eab30f6c1c4898be5d
BLAKE2b-256 5b7365d2f0b698df1731e851e3295eb29a5ab8aa06f763f7e4188647a809578d

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ffbb1acd69fdf8e89dd60ef6182ca90a743620957afb7066385a7bbe88dc748
MD5 6b092a9280ada70482d44f538752fc0b
BLAKE2b-256 f41b17efd94cad1b9d605c3f8907fb06bcffc4ce4d1d14d46b95316cccccf2b9

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 8ec0636d3f7d68520afc6ac2dc4b8341ddb725039de042faf0e311599f54eb37
MD5 6d9f50717e7b40f1ebdf139f83cc7504
BLAKE2b-256 7a1b50985edb6f1ec495a1c36452e860476f5b7ecdc3fc59ea89ccad3c4926c5

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3074634ea4d6df66be04f6728ee1d173cfded75d002c75fac79503a880bf3825
MD5 65e630a0de5403c41a0083198bc14442
BLAKE2b-256 2b86d019fb60a9d0f1d4cf04b014fe88a9135090adfadcc31c1fadbb071d7fa7

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23ae9f0c2d889b7b2d88a3791f6c09e2ef827c2446f1c4a3e3e76328ee4afd9a
MD5 30c25784c07965592cf88104b6c02508
BLAKE2b-256 d1aff83580891577b13bd7e261416120e036d0d8fb508c8a43a73e38928b794b

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ac9bea18d6d58a995fac1b2cb4488e17eceeac413af014b1dd26170b766d8467
MD5 bdf299e0abc45b5c5113a1cc5505636a
BLAKE2b-256 0ce6847d15770ab7a01e807bdfcd4ead5bdae57c0092b7dc83878171b6af97bb

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 da1eeb460ecce8d5b8608826595c777728cdf28ce7b5a5a8c8ac8d949beadcf2
MD5 fdb54e7345ff657d208fbb52469a5861
BLAKE2b-256 66a34139296b481ae7304a43581046b8f0a20da6a0dfe0ee47a044cade796603

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.2.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 860fd59990c37c3ef913c3ae390b3929d005243acca1a86facb0773e2d8d9e50
MD5 57121319a2fbb76eed4b268282ed668e
BLAKE2b-256 30e966cc0f66386d78ed89e45a56e2a1d051e177b6e04477c4a41cd590ef4017

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d6d6a0910c3b4368d89dde073e630882cdb266755565155bc33520283b2d9df8
MD5 425e0cebeb1c2c91bba42ae195836268
BLAKE2b-256 d4bdd557f10fa50dc4d5871fb9606af563249b66af2fc6f99041a10e8757c6f1

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a972cec723e0563aa0823ee2ab1df0cb196ed0778f173b381c871a03719d4826
MD5 e0effe9902e262704a115c6f7095daf7
BLAKE2b-256 c84e0c25f74c88239a37924577d6ad780f3212a50f4b4b5f54f5e8c918d726bd

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02935e2c3c0c6cbe9c7955a8efa8908dd4221d7755644c59d1bba28b94fd334f
MD5 efa1a587f607a37336c477bed977ea64
BLAKE2b-256 5b86caec78829311f62afa6fa334c8dfcd79cffb4d24bcf96ee02ae4840d462b

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd249bc894af67cbd8bad2c22e7cbcd46cf87ddfca1f1289d1e7e54868cc785c
MD5 c85b92e2ed7ef0eaeb15909ad73aea22
BLAKE2b-256 34225ece749c0e5420a9380eef6fbf83d16a50010bd18fef77b9193d80a6760e

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 451e854cfae0febe723077bd0cf0a4302a5d84ff25f0bfece8f29206c7bed02e
MD5 d33d53efc5744b577cb8a6ac9971cfdb
BLAKE2b-256 47e2fccf89d64d9b47ffb242823d4e851fc9d36fa751908c9aac2807924d9b4e

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c7d1fd447e33ee20c1f33f2c8e6634211124a9aabde3c617687d8b739aa69eac
MD5 1682639d0420a532f8894c4a8685b23d
BLAKE2b-256 9ce6efb8cd6122bf25e86e3dd89d9dbfec9e6861c50e8810eed77d4be59b51c6

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6d9fc9d812c81e6168b6d405bf00b8d6739a7f72ef22a9214c4241e0dc70b323
MD5 7a0c8804cb6ebca82b1cf3063b410687
BLAKE2b-256 3b89f43bcad18f2b2e5814457b1c7f7b0e671d0db12c8c0e43397ab8cb1831ed

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 642199e98af1bd2b6aeb8ecf726972d238c9877b0f6e8221ee5ab945ec8a2189
MD5 ef5336ddae73feef891844a205f89b15
BLAKE2b-256 216732c68756eed84df181c06528ff57e09138f893c4653448c4967311e0f992

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 64bd6e1762cd7f0986a740fee4dff927b9ec2c5e4d9a28d056eb17d332158014
MD5 20564a5caeb621061267f9d80c1e7ed0
BLAKE2b-256 929b95678092febd14070cfb7906ea7932e71e9dd5a6ab3ee948f9ed975e905d

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.2.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.1

File hashes

Hashes for numpy-2.2.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 159ff6ee4c4a36a23fe01b7c3d07bd8c14cc433d9720f977fcd52c13c0098160
MD5 d874e626f58175ad603cb68fda2a4e28
BLAKE2b-256 819bbae9618cab20db67a2ca9d711795cad29b2ca4b73034dd3b5d05b962070a

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 09d6a2032faf25e8d0cadde7fd6145118ac55d2740132c1d845f98721b5ebcfd
MD5 546612d82fae082697879aaf2b985b1b
BLAKE2b-256 3097ab96b7650f27f684a9b1e46757a7294ecc50cab27701d05f146e9f779627

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8e6da5cffbbe571f93588f562ed130ea63ee206d12851b60819512dd3e1ba50d
MD5 a81749effc5160ff8dde7eb2ebe868c4
BLAKE2b-256 afd4dd9b19cd4aff9c79d3f54d17f8be815407520d3116004bc574948336981b

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3fbe72d347fbc59f94124125e73fc4976a06927ebc503ec5afbfb35f193cd957
MD5 a34ef5e7c967136fdc59c822e99f87d6
BLAKE2b-256 e3d711fc594838d35c43519763310c316d4fd56f8600d3fc80a8e13e325b5c5c

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b78ea78450fd96a498f50ee096f69c75379af5138f7881a51355ab0e11286c97
MD5 21d165669635a9b680d03b0b4e7f5b98
BLAKE2b-256 47a7029354ab56edd43dd3f5efbfad292b8844f98b93174f322f82353fa46efa

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 995f9e8181723852ca458e22de5d9b7d3ba4da3f11cc1cb113f093b271d7965a
MD5 8c410efac169af880cacbbac8a731658
BLAKE2b-256 7ff43d8a5a0da297034106c5de92be881aca7079cde6058934215a1de91334f6

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 40c7ff5da22cd391944a28c6a9c638a5eef77fcf71d6e3a79e1d9d9e82752715
MD5 c6b2caa2bbb645b5950dccb77efb1dbb
BLAKE2b-256 0a2cd468ebd253851af10de5b3e8f3418ebabfaab5f0337a75299fbeb8b8c17a

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ec6c689c61df613b783aeb21f945c4cbe6c51c28cb70aae8430577ab39f163e
MD5 bc79fa2e44316b7ce9bacb48a993ed91
BLAKE2b-256 312c39f91e00bbd3d5639b027ac48c55dc5f2992bd2b305412d26be4c830862a

See more details on using hashes here.

File details

Details for the file numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7079129b64cb78bdc8d611d1fd7e8002c0a2565da6a47c4df8062349fee90e3e
MD5 749cb2adf8043551aae22bbf0ed3130a
BLAKE2b-256 702a69033dc22d981ad21325314f8357438078f5c28310a6d89fb3833030ec8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page