Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard Typing

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.3.1.tar.gz (20.4 MB view details)

Uploaded Source

Built Distributions

numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl (12.9 MB view details)

Uploaded PyPyWindows x86-64

numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl (16.8 MB view details)

Uploaded PyPymanylinux: glibc 2.28+ x86-64

numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl (14.4 MB view details)

Uploaded PyPymanylinux: glibc 2.28+ ARM64

numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPymacOS 14.0+ x86-64

numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded PyPymacOS 14.0+ ARM64

numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl (21.1 MB view details)

Uploaded PyPymacOS 10.15+ x86-64

numpy-2.3.1-cp313-cp313t-win_arm64.whl (10.3 MB view details)

Uploaded CPython 3.13tWindows ARM64

numpy-2.3.1-cp313-cp313t-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.13tWindows x86-64

numpy-2.3.1-cp313-cp313t-win32.whl (6.4 MB view details)

Uploaded CPython 3.13tWindows x86

numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ x86-64

numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ ARM64

numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13tmacOS 14.0+ x86-64

numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13tmacOS 14.0+ ARM64

numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.13tmacOS 10.13+ x86-64

numpy-2.3.1-cp313-cp313-win_arm64.whl (10.2 MB view details)

Uploaded CPython 3.13Windows ARM64

numpy-2.3.1-cp313-cp313-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.13Windows x86-64

numpy-2.3.1-cp313-cp313-win32.whl (6.3 MB view details)

Uploaded CPython 3.13Windows x86

numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13macOS 14.0+ x86-64

numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl (14.2 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

numpy-2.3.1-cp312-cp312-win_arm64.whl (10.2 MB view details)

Uploaded CPython 3.12Windows ARM64

numpy-2.3.1-cp312-cp312-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.12Windows x86-64

numpy-2.3.1-cp312-cp312-win32.whl (6.3 MB view details)

Uploaded CPython 3.12Windows x86

numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12macOS 14.0+ x86-64

numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

numpy-2.3.1-cp311-cp311-win_arm64.whl (10.5 MB view details)

Uploaded CPython 3.11Windows ARM64

numpy-2.3.1-cp311-cp311-win_amd64.whl (13.0 MB view details)

Uploaded CPython 3.11Windows x86-64

numpy-2.3.1-cp311-cp311-win32.whl (6.6 MB view details)

Uploaded CPython 3.11Windows x86

numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl (14.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11macOS 14.0+ x86-64

numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

File details

Details for the file numpy-2.3.1.tar.gz.

File metadata

  • Download URL: numpy-2.3.1.tar.gz
  • Upload date:
  • Size: 20.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1.tar.gz
Algorithm Hash digest
SHA256 1ec9ae20a4226da374362cca3c62cd753faf2f951440b0e3b98e93c235441d2b
MD5 886559a4c541298b37245e389ce8bf10
BLAKE2b-256 2e19d7c972dfe90a353dbd3efbbe1d14a5951de80c99c9dc1b93cd998d51dc0f

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e610832418a2bc09d974cc9fecebfa51e9532d6190223bc5ef6a7402ebf3b5cb
MD5 2abf906a6688c98693045cbbc655d5b7
BLAKE2b-256 486b1c6b515a83d5564b1698a61efa245727c8feecf308f4091f565988519d20

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 eabd7e8740d494ce2b4ea0ff05afa1b7b291e978c0ae075487c51e8bd93c0c68
MD5 41f535aa1f1acaf3d8a32a462a4cd4c8
BLAKE2b-256 1508e00e7070ede29b2b176165eba18d6f9784d5349be3c0c1218338e79c27fd

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c6e0bf9d1a2f50d2b65a7cf56db37c095af17b59f6c132396f7c6d5dd76484df
MD5 e0c7bcd526cde46489d5a8f12e06cc77
BLAKE2b-256 aeee89bedf69c36ace1ac8f59e97811c1f5031e179a37e4821c3a230bf750142

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 15aa4c392ac396e2ad3d0a2680c0f0dee420f9fed14eef09bdb9450ee6dcb7b7
MD5 98ec3c19a365d0ae926113bb349e323b
BLAKE2b-256 7ab4fe3ac1902bff7a4934a22d49e1c9d71a623204d654d4cc43c6e8fe337fcb

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 ebb8603d45bc86bbd5edb0d63e52c5fd9e7945d3a503b77e486bd88dde67a19b
MD5 4c2e234eb4f346f362d6e6c620fa7a56
BLAKE2b-256 65b641b705d9dbae04649b529fc9bd3387664c3281c7cd78b404a4efe73dcc45

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ad506d4b09e684394c42c966ec1527f6ebc25da7f4da4b1b056606ffe446b8a3
MD5 b1bc3cbf9cd407964b2bb25dfe86ca3d
BLAKE2b-256 e834facc13b9b42ddca30498fc51f7f73c3d0f2be179943a4b4da8686e259740

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.1-cp313-cp313t-win_arm64.whl
  • Upload date:
  • Size: 10.3 MB
  • Tags: CPython 3.13t, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-win_arm64.whl
Algorithm Hash digest
SHA256 eccb9a159db9aed60800187bc47a6d3451553f0e1b08b068d8b277ddfbb9b244
MD5 b421530a87bb8e9e3d4dc34c75d5d953
BLAKE2b-256 d4caaf82bf0fad4c3e573c6930ed743b5308492ff19917c7caaf2f9b6f9e2e98

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.1-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 2a809637460e88a113e186e87f228d74ae2852a2e0c44de275263376f17b5bdc
MD5 2375e2f2a5b75c5f5c908af6bb85d639
BLAKE2b-256 f17e7f431d8bd8eb7e03d79294aed238b1b0b174b3148570d03a8a8a8f6a0da9

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.3.1-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 6269b9edfe32912584ec496d91b00b6d34282ca1d07eb10e82dfc780907d6c2e
MD5 30f30dde6f806070b2164e48a632a350
BLAKE2b-256 228accdf201457ed8ac6245187850aff4ca56a79edbea4829f4e9f14d46fa9a5

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 010ce9b4f00d5c036053ca684c77441f2f2c934fd23bee058b4d6f196efd8280
MD5 1f7f0076411ed4afa9c4553eb06564cb
BLAKE2b-256 2b57c3203974762a759540c6ae71d0ea2341c1fa41d84e4971a8e76d7141678a

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c4913079974eeb5c16ccfd2b1f09354b8fed7e0d6f2cab933104a09a6419b1ee
MD5 eb110c4aa0d73558187397ddfba179ad
BLAKE2b-256 0d15def96774b9d7eb198ddadfcbd20281b20ebb510580419197e225f5c55c3e

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ce2ce9e5de4703a673e705183f64fd5da5bf36e7beddcb63a25ee2286e71ca48
MD5 43a92ad37dc68d719bdeeeb65b3f4d2f
BLAKE2b-256 fcecb74d3f2430960044bdad6900d9f5edc2dc0fb8bf5a0be0f65287bf2cbe27

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 23ab05b2d241f76cb883ce8b9a93a680752fbfcbd51c50eff0b88b979e471d8c
MD5 2340bd78962f194bcdbee6531d954acc
BLAKE2b-256 e362d68e52fb6fde5586650d4c0ce0b05ff3a48ad4df4ffd1b8866479d1d671d

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 2fb86b7e58f9ac50e1e9dd1290154107e47d1eef23a0ae9145ded06ea606f992
MD5 5b8c778033c98b4a0ce6e5bfc7625f05
BLAKE2b-256 e8eca926c293c605fa75e9cfb09f1e4840098ed46d2edaa6e2152ee35dc01ed3

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d70f20df7f08b90a2062c1f07737dd340adccf2068d0f1b9b3d56e2038979fee
MD5 283064dabb434f3dbc1a5e2514b9cb29
BLAKE2b-256 a67f06187b0066eefc9e7ce77d5f2ddb4e314a55220ad62dd0bfc9f2c44bac14

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5bdf2015ccfcee8253fb8be695516ac4457c743473a43290fd36eba6a1777eb
MD5 93c17afb38cf8fd876ca2bd9ea7e9612
BLAKE2b-256 25918ea8894406209107d9ce19b66314194675d31761fe2cb3c84fe2eeae2f37

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b0b5397374f32ec0649dd98c652a1798192042e715df918c20672c62fb52d4b8
MD5 b22dc66970a8017e4d0ce83ef8c938af
BLAKE2b-256 ea19a029cd335cf72f79d2644dcfc22d90f09caa86265cbbde3b5702ccef6890

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.1-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 0c4d9e0a8368db90f93bd192bfa771ace63137c3488d198ee21dfb8e7771916e
MD5 a0d0dd68bbf0ab378142b2daff0a8e06
BLAKE2b-256 0bc35c0c575d7ec78c1126998071f58facfc124006635da75b090805e642c62e

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 8d5ee6eec45f08ce507a6570e06f2f879b374a552087a4179ea7838edbcbfa42
MD5 57829996fc12f649547f0258443bbb20
BLAKE2b-256 ddc8beaba449925988d415efccb45bf977ff8327a02f655090627318f6398c7b

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.3.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 39bff12c076812595c3a306f22bfe49919c5513aa1e0e70fac756a0be7c2a2b8
MD5 0aaed62cb1bae9c1b1a44d1a4eda2db7
BLAKE2b-256 408d2ddd6c9b30fcf920837b8672f6c65590c7d92e43084c25fc65edc22e93ca

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a780033466159c2270531e2b8ac063704592a0bc62ec4a1b991c7c40705eb0e8
MD5 ec956eb37b874b1ec52d6ffccda6ef65
BLAKE2b-256 772b4014f2bcc4404484021c74d4c5ee8eb3de7e3f7ac75f06672f8dcf85140a

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0
MD5 6516337f0347974fada21a23a818be64
BLAKE2b-256 6eec3b68220c277e463095342d254c61be8144c31208db18d3fd8ef02712bcd6

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1
MD5 5aa2040f947204e15e95ec87461a7e91
BLAKE2b-256 5030af1b277b443f2fb08acf1c55ce9d68ee540043f158630d62cef012750f9f

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1
MD5 22935447e75acda4075c57b332c0236a
BLAKE2b-256 bf0d1854a4121af895aab383f4aa233748f1df4671ef331d898e32426756a8a6

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 a894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d
MD5 593cb311f5170cbcfcefb587cdcc70bb
BLAKE2b-256 6d63a7f7fd5f375b0361682f6ffbf686787e82b7bbd561268e4f30afad2bb3c0

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 bada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0
MD5 894d56072db9358e0096538710a1a8ce
BLAKE2b-256 8c0fa1f269b125806212a876f7efb049b06c6f8772cf0121139f97774cd95626

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e
MD5 5e1593fcc8bb3447e995622f2dca017b
BLAKE2b-256 f14fdf5923874d8095b6062495b39729178eef4a922119cee32a12ee1bd4664c

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8
MD5 22a2a9a568dd0866b288ad8bd8bb3e90
BLAKE2b-256 d4bd35ad97006d8abff8631293f8ea6adf07b0108ce6fec68da3c3fcca1197f2

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.1-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30
MD5 58ffa7c69587f9bf8f6025794fec7f63
BLAKE2b-256 04a88a5e9079dc722acf53522b8f8842e79541ea81835e9b5483388701421073

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76
MD5 f753b957fcb7f06f043cf9c6114f294c
BLAKE2b-256 b13ee28f4c1dd9e042eb57a3eb652f200225e311b608632bc727ae378623d4f8

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.3.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab
MD5 a767bd10267ad6baef9655fb08db3fd3
BLAKE2b-256 2b190fb49a3ea088be691f040c9bf1817e4669a339d6e98579f91859b902c636

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77
MD5 e89d8d460060e8315c3ba68b2b649db0
BLAKE2b-256 bc6dceafe87587101e9ab0d370e4f6e5f3f3a85b9a697f2318738e5e7e176ce3

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952
MD5 404128939d89d1ea26be105fb03b5028
BLAKE2b-256 e4fffeb4be2e5c09a3da161b412019caf47183099cbea1132fd98061808c2df2

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660
MD5 94dcc636a2f2478666d820e21fc91682
BLAKE2b-256 6e45c51cb248e679a6c6ab14b7a8e3ead3f4a3fe7425fc7a6f98b3f147bec532

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25
MD5 7c2d8b4412f12b9b02e98349fb5cd760
BLAKE2b-256 61b2512b0c2ddec985ad1e496b0bd853eeb572315c0f07cd6997473ced8f15e2

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943
MD5 7fec491834803a8ffa3765ef3d03cea5
BLAKE2b-256 c9fc84ea0cba8e760c4644b708b6819d91784c290288c27aca916115e3311d17

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc
MD5 2554944d786abd284db4a699d4edfe1e
BLAKE2b-256 57dd28fa3c17b0e751047ac928c1e1b6990238faad76e9b147e585b573d9d1bd

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29
MD5 fa389e78db43f3c2841ce127c1205422
BLAKE2b-256 25652db52ba049813670f7f987cc5db6dac9be7cd95e923cc6832b3d32d87cef

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d
MD5 fccca48846d41d38966cc75395787f79
BLAKE2b-256 c65671ad5022e2f63cfe0ca93559403d0edef14aea70a841d640bd13cdba578e

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.1-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 ec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a
MD5 1fe2615669de5c271a48b99356fa3528
BLAKE2b-256 51582d842825af9a0c041aca246dc92eb725e1bc5e1c9ac89712625db0c4e11c

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 13.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff
MD5 f777712419f3dd586ac294ddce84b274
BLAKE2b-256 6bfbbb613f4122c310a13ec67585c70e14b03bfc7ebabd24f4d5138b97371d7c

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.3.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369
MD5 96933cac225fb8b60a9cc2c0efa14d36
BLAKE2b-256 43a6482a53e469b32be6500aaf61cfafd1de7a0b0d484babf679209c3298852e

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115
MD5 d99f993ef05966ead99df736df18b521
BLAKE2b-256 ff86a471f65f0a86f1ca62dcc90b9fa46174dd48f50214e5446bc16a775646c5

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93
MD5 7d0c0fd11c573c510a25dd7513e4ae0a
BLAKE2b-256 6ae25756a00cabcf50a3f527a0c968b2b4881c62b1379223931853114fa04cda

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 afed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb
MD5 003d6268344577b804205098e11cdaa0
BLAKE2b-256 75c99bec03675192077467a9c7c2bdd1f2e922bd01d3a69b15c3a0fdcd8548f6

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db
MD5 705aafad1250aa3e41502c5710a26ed5
BLAKE2b-256 ef606b06ed98d11fb32e27fb59468b42383f3877146d3ee639f733776b6ac596

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e
MD5 7e3118fe383af697a8868ba191b9eac0
BLAKE2b-256 b02593b621219bb6f5a2d4e713a824522c69ab1f06a57cd571cda70e2e31af44

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a
MD5 dc0f17823bb1826519d6974c2b95fa90
BLAKE2b-256 7d316e35a247acb1bfc19226791dfc7d4c30002cd4e620e11e58b0ddf836fe52

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae
MD5 fdb5454e372d399cf570868ea7e2b192
BLAKE2b-256 580e0966c2f44beeac12af8d836e5b5f826a407cf34c45cb73ddcdfce9f5960b

See more details on using hashes here.

File details

Details for the file numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070
MD5 c353ac75ea083594a6cb674b5f943d83
BLAKE2b-256 b0c787c64d7ab426156530676000c94784ef55676df2f13b2796f97722464124

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page