Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics,

science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.14.1.zip (12.2 MB view details)

Uploaded Source

scipy-0.14.1.tar.gz (10.9 MB view details)

Uploaded Source

Built Distributions

scipy-0.14.1-cp34-cp34m-manylinux1_x86_64.whl (35.2 MB view details)

Uploaded CPython 3.4m

scipy-0.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scipy-0.14.1-cp33-cp33m-manylinux1_x86_64.whl (34.9 MB view details)

Uploaded CPython 3.3m

scipy-0.14.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.3mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scipy-0.14.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.2 MB view details)

Uploaded CPython 2.7macOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scipy-0.14.1-cp27-cp27mu-manylinux1_x86_64.whl (35.5 MB view details)

Uploaded CPython 2.7mu

scipy-0.14.1-cp27-cp27m-manylinux1_x86_64.whl (35.5 MB view details)

Uploaded CPython 2.7m

scipy-0.14.1-cp26-cp26mu-manylinux1_x86_64.whl (35.5 MB view details)

Uploaded CPython 2.6mu

File details

Details for the file scipy-0.14.1.zip.

File metadata

  • Download URL: scipy-0.14.1.zip
  • Upload date:
  • Size: 12.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.14.1.zip
Algorithm Hash digest
SHA256 c986d4f5fa92d42f2218e71e3aef6c89b20dede19ff7f9757f72211cc93d6fad
MD5 4bfc35d3683e0ef397157f84040df5b0
BLAKE2b-256 c7ce993b23695a83da2ecd58b083e95ccc162257b24f273299d4d88b6eac5507

See more details on using hashes here.

File details

Details for the file scipy-0.14.1.tar.gz.

File metadata

  • Download URL: scipy-0.14.1.tar.gz
  • Upload date:
  • Size: 10.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.14.1.tar.gz
Algorithm Hash digest
SHA256 ab75f161107ee411c054abc35e28ec2d19bb5ec8437aaf6c32b80916568f7dad
MD5 1bfedd3197b3e3f8cd131ae2c06a1bf5
BLAKE2b-256 174c3c01634c5332e1969a27fe5b249fc72a9e79c178f841aedc2635bcf61dee

See more details on using hashes here.

File details

Details for the file scipy-0.14.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 95d945c2e1573928564e68d9ea9560f6846386c30cdbb67ed0c0e4da2c9a70e5
MD5 b2042be8047ec9d907a6f97422079efe
BLAKE2b-256 34fb561a9da3563aca589aef20c4bd95dc91b941171b7266a726fd7cda3afd1c

See more details on using hashes here.

File details

Details for the file scipy-0.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2fd66c263e0069a3e5c7c822b61b46add84c8819e2af7e0d46a47020e7eaf34d
MD5 1c9eca63055d0e64b9b9d241ec5f9c0f
BLAKE2b-256 da850889544b47bcd30ae1341c0bb6e20720afb890134332cdc34071ab9b6800

See more details on using hashes here.

File details

Details for the file scipy-0.14.1-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.1-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3207c07e0ffa965ec55c9ad53b239596dd2fa88d73afd8ac16cbb9f5d8569760
MD5 561ff8f7df4e92466217045d5cd963d4
BLAKE2b-256 57dca892e265f61b32a0852e6417e71020700d7b3cc6b66b2850f39e7c720146

See more details on using hashes here.

File details

Details for the file scipy-0.14.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0cc2e3a8efdf3f17cf358d391596149c43b49061c92966409cb8d7eb2ffcfda9
MD5 423c77aa343f76c30788166400696f68
BLAKE2b-256 d24bd58ddeb42d3b9374d86afc216f8841fc15503fa3ee9a56aa9f69f7409251

See more details on using hashes here.

File details

Details for the file scipy-0.14.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 48d5021474f344a240a6e8cc3adf47b130f41037321b3f5355e8ed6fb9e6ba63
MD5 6bdf3109da07d8d6caeb438777d312dc
BLAKE2b-256 38a9abff072f949fe2b3a813cd2e46b042f136ccfe740c47c5207c3defa44730

See more details on using hashes here.

File details

Details for the file scipy-0.14.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8fae3fea19c10414b07d9e529e4460ecea6db991f2c46b107085075aade70357
MD5 f92e22cbdcd40084b805abf3289c9bce
BLAKE2b-256 5bbdfb2f8e2060727fa73744463307370051ff3b8d9ced2109df74d4aa17c201

See more details on using hashes here.

File details

Details for the file scipy-0.14.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cc07a50c44c9059920487f36ab9192564107edb54763d79de853beded15fb916
MD5 81ad6eba89aac213f4fbf5e204a7edc8
BLAKE2b-256 ddf0222bb29fae425bd482cad6d5f284e63a752ddb28039003d0de310a8773f6

See more details on using hashes here.

File details

Details for the file scipy-0.14.1-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.1-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fd1d244387944bcb6f18163a89c755d164ae8accc592366811f7760a3c45f0f5
MD5 18790f7d021dbf05bea0e3eccf144f5d
BLAKE2b-256 e2d8cafe07f71d6acd838a53aa874242190f6b690ccde4b0bcb94df717e347fc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page