Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.17.0.zip (13.8 MB view details)

Uploaded Source

scipy-0.17.0.tar.gz (12.4 MB view details)

Uploaded Source

Built Distributions

scipy-0.17.0-cp35-cp35m-manylinux1_x86_64.whl (41.1 MB view details)

Uploaded CPython 3.5m

scipy-0.17.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.17.0-cp34-cp34m-manylinux1_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.4m

scipy-0.17.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.17.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.17.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (20.9 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.17.0-cp27-cp27mu-manylinux1_x86_64.whl (39.5 MB view details)

Uploaded CPython 2.7mu

scipy-0.17.0-cp27-cp27m-manylinux1_x86_64.whl (39.5 MB view details)

Uploaded CPython 2.7m

File details

Details for the file scipy-0.17.0.zip.

File metadata

  • Download URL: scipy-0.17.0.zip
  • Upload date:
  • Size: 13.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.17.0.zip
Algorithm Hash digest
SHA256 ede6820030b2e5796126aa1571d86738b14bbd670d68c83378877b1d9eb9894d
MD5 28a4fe29e980804db162524f10873211
BLAKE2b-256 7e95df3dd7527db6fbf8f2dcce4cc0919bb1fb7fb0463739dddde49c225a87e5

See more details on using hashes here.

File details

Details for the file scipy-0.17.0.tar.gz.

File metadata

  • Download URL: scipy-0.17.0.tar.gz
  • Upload date:
  • Size: 12.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.17.0.tar.gz
Algorithm Hash digest
SHA256 f600b755fb69437d0f70361f9e560ab4d304b1b66987ed5a28bdd9dd7793e089
MD5 5ff2971e1ce90e762c59d2cd84837224
BLAKE2b-256 1687fdd4d069b1e784d4598605c20d8a7c535883b298aef960dc286b395359d7

See more details on using hashes here.

File details

Details for the file scipy-0.17.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6aa7c25445bba4186f16324ffa944e2276f9b1d2f94e7403ddb626808099aa2c
MD5 a6f43f8a10e9f4c128b11556fdbec0be
BLAKE2b-256 7dd386fe2115341f9ba01f1e9af3063e7d431587016aabf1c3a5546f33d3db55

See more details on using hashes here.

File details

Details for the file scipy-0.17.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 470a526088d5ce8bad78c0210fb500a5313b08038d36eef2b8fa240f4078d518
MD5 8e2adbbe5d83f773d6a1d915c46eb62f
BLAKE2b-256 9066a610cdf6201374d3dd012f74bed6cdfbfac0229b5a91a0121a345f812bdc

See more details on using hashes here.

File details

Details for the file scipy-0.17.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7e52f7f62ebd5fc44d91f2a1e5ad3bc39dadb6284c4154a16d44f6000b8b7994
MD5 04060803f2a74270400e8c5bcedf1a13
BLAKE2b-256 06f1717f43612df6f0b02560a1f91c262fc0add56abb73df878faefc2f21856e

See more details on using hashes here.

File details

Details for the file scipy-0.17.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 6f6a9f05a87031a1a3ff9e3f49b85dca9c1764467235a0f3ff6aeeff3ec45722
MD5 c6c64c6511ba0de09ca973aaf881b354
BLAKE2b-256 fc1b984a997a6e1af1d55a05bafb9b0fcbf008a9114ff0549476c1fd25db44d6

See more details on using hashes here.

File details

Details for the file scipy-0.17.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2f9295bdfd332f732cc95316a208b5e463b6d2dd51c8f9f231b0b6a9a7811ed0
MD5 a77d71df0552df9944a93f930741eebf
BLAKE2b-256 73bb47e899fe7c6d976e90f70f313fb2d1697ec981457c907d7abc951f0affa1

See more details on using hashes here.

File details

Details for the file scipy-0.17.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b5c5faa341ef515db95a17314aec958f112e95083aa71a981aebdb7c63cb4958
MD5 70887caa75faf193f502c9269d308a03
BLAKE2b-256 745a2a7474768bffb3ee40544f91d4d9673e838bf3d6982bb05a1cf2487a8f7e

See more details on using hashes here.

File details

Details for the file scipy-0.17.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d3a685f4ad73df44ad908466ac8276e1540f0b8e8ac1d18a60dbf529fae2edd7
MD5 a5c0cf531a073dd3d2746856863bb4dd
BLAKE2b-256 345388566a8d960e1f3ebea0af46b4570b6d96acd622bbc9f3e833ca74f905fa

See more details on using hashes here.

File details

Details for the file scipy-0.17.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6c027c9d7107f79945efd9965892e9b837a506f9d8007955bb10da4a604b9acc
MD5 c0c2f7d5dc4c509eb21c0ad04689a46d
BLAKE2b-256 e5a5504bb317d437fad1b5343c6e0068516f2a7adc20cd4977202f1f84a2e7cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page