Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://github.com/scipy/scipy/blob/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.10.1.tar.gz (42.4 MB view details)

Uploaded Source

Built Distributions

scipy-1.10.1-cp311-cp311-win_amd64.whl (42.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.10.1-cp310-cp310-win_amd64.whl (42.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl (28.8 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.10.1-cp39-cp39-win_amd64.whl (42.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl (35.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scipy-1.10.1-cp38-cp38-win_amd64.whl (42.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl (28.8 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scipy-1.10.1.tar.gz.

File metadata

  • Download URL: scipy-1.10.1.tar.gz
  • Upload date:
  • Size: 42.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.1.tar.gz
Algorithm Hash digest
SHA256 2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5
MD5 de3db61d840456634ba37f2b5816e049
BLAKE2b-256 84a92bf119f3f9cff1f376f924e39cfae18dec92a1514784046d185731301281

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 42.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f
MD5 0611e707fc9601a221fe45734ee4c4a6
BLAKE2b-256 6576903324159e4a3566e518c558aeb21571d642f781d842d8dd0fd9c6b0645a

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d
MD5 f18b34eb6c2d2fc6386448f79f983c5a
BLAKE2b-256 21cdfe2d4af234b80dc08c911ce63fdaee5badcdde3e9bcd9a68884580652ef0

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35
MD5 7ce38386a60faeff9945764950afd31b
BLAKE2b-256 a53db69746c50e44893da57a68457da3d7e5bb75f6a37fbace3769b70d017488

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5
MD5 414c3e59fd6c0bec7626ed781cc699cf
BLAKE2b-256 0d3ed05b9de83677195886fb79844fcca19609a538db63b1790fa373155bc3cf

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd
MD5 00a473cd2d539dc122c7b37951659464
BLAKE2b-256 e753053cd3669be0d474deae8fe5f757bff4c4f480b8a410231e0631c068873d

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 42.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1
MD5 cfb29e468d60cf7ba815bb82f84fabbe
BLAKE2b-256 ece3b06ac3738bf365e89710205a471abe7dceec672a51c244b469bc5d1291c7

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2
MD5 c529f1d6ff9d39ac7b5027778ad6055c
BLAKE2b-256 1f4b3bacad9a166350cb2e518cea80ab891016933cc1653f15c90279512c5fa9

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f
MD5 e3f6a817ff0a1d4ddf8c29f017930808
BLAKE2b-256 040ba1b119c869b79a2ab459b7f9fd7e2dea75a9c7d432e64e915e75586bd00b

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e
MD5 3666cb6db6e2205214f3b5f743f32162
BLAKE2b-256 eae5452086ebed676ce4000ceb5eeeb0ee4f8c6f67c7e70fb9323a370ff95c1f

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019
MD5 038b40489075536015cdfdd5b3448287
BLAKE2b-256 0aacb1f1bbf7b01d96495f35be003b881f10f85bf6559efb6e9578da832c2140

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 42.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea
MD5 b503abd182b6f2047b5af060e2df4c91
BLAKE2b-256 35200ec6246bbb43d18650c9a7cad6602e1a84fd8f9564a9b84cc5faf1e037d0

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601
MD5 b3b49cb6c274ed58f79c60e9f98282e4
BLAKE2b-256 5d30b2a2a5bf1a3beefb7609fb871dcc6aef7217c69cef19a4631b7ab5622a8a

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353
MD5 c0547cc19e7f83fbb2cff56f1bc378de
BLAKE2b-256 77d1722c457b319eed1d642e0a14c9be37eb475f0e6ed1f3401fa480d5d6d36e

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6
MD5 b767b83437990cadb8cebd5513fc17e0
BLAKE2b-256 e7f055d81813b1a4cb79ce7dc8290eac083bf38bfb36e1ada94ea13b7b1a5f79

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9
MD5 de8ee3fa36d67057ee1c0a58ede8072d
BLAKE2b-256 d97d78b8035bc93c869b9f17261c87aae97a9cdb937f65f0d453c2831aa172fc

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 42.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415
MD5 d1130585fa460fc8267ec3bff5e7c231
BLAKE2b-256 328e7f403535ddf826348c9b8417791e28712019962f7e90ff845896d6325d09

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f
MD5 4e7919ee7b126817d566bb32d7f99e0e
BLAKE2b-256 69f0fb07a9548e48b687b8bf2fa81d71aba9cfc548d365046ca1c791e24db99d

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1
MD5 1bb4ada4082c43e8312d11182f006d80
BLAKE2b-256 d2b5ff61b79ad0ebd15d87ade10e0f4e80114dd89fac34a5efade39e99048c91

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88
MD5 87c12a8bc1b238202d086462d34838a3
BLAKE2b-256 934a50c436de1353cce8b66b26e49a687f10b91fe7465bf34e4565d810153003

See more details on using hashes here.

File details

Details for the file scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35
MD5 40eed028ec0849127dce3333c97c443a
BLAKE2b-256 a0e337508a11dae501349d7c16e4dd18c706a023629eedc650ee094593887a89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page