Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.9.1.tar.gz (42.0 MB view details)

Uploaded Source

Built Distributions

scipy-1.9.1-cp310-cp310-win_amd64.whl (38.6 MB view details)

Uploaded CPython 3.10Windows x86-64

scipy-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

scipy-1.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

scipy-1.9.1-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.4 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.1-cp310-cp310-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.10macOS 12.0+ ARM64

scipy-1.9.1-cp310-cp310-macosx_10_9_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

scipy-1.9.1-cp39-cp39-win_amd64.whl (38.6 MB view details)

Uploaded CPython 3.9Windows x86-64

scipy-1.9.1-cp39-cp39-win32.whl (34.6 MB view details)

Uploaded CPython 3.9Windows x86

scipy-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

scipy-1.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

scipy-1.9.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (38.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ i686

scipy-1.9.1-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.4 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.1-cp39-cp39-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.9macOS 12.0+ ARM64

scipy-1.9.1-cp39-cp39-macosx_10_9_x86_64.whl (36.7 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

scipy-1.9.1-cp38-cp38-win_amd64.whl (38.6 MB view details)

Uploaded CPython 3.8Windows x86-64

scipy-1.9.1-cp38-cp38-win32.whl (34.5 MB view details)

Uploaded CPython 3.8Windows x86

scipy-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

scipy-1.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

scipy-1.9.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (37.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686

scipy-1.9.1-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.1-cp38-cp38-macosx_12_0_arm64.whl (29.8 MB view details)

Uploaded CPython 3.8macOS 12.0+ ARM64

scipy-1.9.1-cp38-cp38-macosx_10_9_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file scipy-1.9.1.tar.gz.

File metadata

  • Download URL: scipy-1.9.1.tar.gz
  • Upload date:
  • Size: 42.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.1.tar.gz
Algorithm Hash digest
SHA256 26d28c468900e6d5fdb37d2812ab46db0ccd22c63baa095057871faa3a498bc9
MD5 e6e70a9014dba74b4ef16686d23fd3ad
BLAKE2b-256 dbaf16906139f52bc6866c43401869ce247662739ad71afa11c6f18505eb0546

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 38.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8d3faa40ac16c6357aaf7ea50394ea6f1e8e99d75e927a51102b1943b311b4d9
MD5 01937d372de92b3bcf9196b81bf8041d
BLAKE2b-256 a91767861cb65190a28e726e5f99f8938756385e8b2257cbae2b13e58594ae27

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8cc81ac25659fec73599ccc52c989670e5ccd8974cf34bacd7b54a8d809aff1a
MD5 d95584ddfe0703ba3b4624001a1f84f7
BLAKE2b-256 c28937b6e11bfe24e96a375fc39e6ffb6c2f27ff795cfb735ae83130e0bf78b5

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f950a04b33e17b38ff561d5a0951caf3f5b47caa841edd772ffb7959f20a6af0
MD5 2339afc328d3c92cf85d1d86c5be4e19
BLAKE2b-256 c0d75d6a7a36fc84f2d87e436e63f0406bb93d999b37a8c68be5e0587e95d80e

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 825951b88f56765aeb6e5e38ac9d7d47407cfaaeb008d40aa1b45a2d7ea2731e
MD5 43a2fa03b951738d0deed6ddbc0a9f4d
BLAKE2b-256 8efed4e35d6166ba578f7af91b6d40bc9f388689f9e773378c7ea7f4f8cf962d

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d79da472015d0120ba9b357b28a99146cd6c17b9609403164b1a8ed149b4dfc8
MD5 301053451a09b81268734133ce6d7bda
BLAKE2b-256 9103fa8613db8fa211e486fbf18c64103f53e98bddcfe3678701f42a95887690

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c61b4a91a702e8e04aeb0bfc40460e1f17a640977c04dda8757efb0199c75332
MD5 6108e7119fd6ae6d6338adede1904bb7
BLAKE2b-256 cc767ee1ae8709033402de63871cae0b04537ab7577b7b9ad3e367f4dd4b3796

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 38.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 90c805f30c46cf60f1e76e947574f02954d25e3bb1e97aa8a07bc53aa31cf7d1
MD5 3571be3d0e79cd46b0ab4c6418f6d44b
BLAKE2b-256 31ed88f65e7007146c79d8fc04cc86112c6a449578a01cea3f1d98fbbf8cac71

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: scipy-1.9.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 34.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 09412eb7fb60b8f00b328037fd814d25d261066ebc43a1e339cdce4f7502877e
MD5 9e1d2a5368f20c120da578a9f99b3986
BLAKE2b-256 8637503d622ac36588f8474a634d83a14d3898e1c1ff19a42db809956e4e8e3e

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96d7cf7b25c9f23c59a766385f6370dab0659741699ecc7a451f9b94604938ce
MD5 8937a4cece2682585ceaf4115e526e21
BLAKE2b-256 bc6ab2f14bf7e1f9db84a5a5c692b9883ae19968feee532036534850088006a9

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47d1a95bd9d37302afcfe1b84c8011377c4f81e33649c5a5785db9ab827a6ade
MD5 156f552987ff57cc347326b1df0a5916
BLAKE2b-256 0380710038ffb14b8d59add3447eaeaffd31177d38a4869806c1e70473773a83

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f7c39f7dbb57cce00c108d06d731f3b0e2a4d3a95c66d96bce697684876ce4d4
MD5 4a9c22a4a059383cfb96cc2373156a30
BLAKE2b-256 359b9a817e981d0faa5b066f08b531e435e87ccc11663e907938218100ad3fdd

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3bc1ab68b9a096f368ba06c3a5e1d1d50957a86665fc929c4332d21355e7e8f4
MD5 94ab8626a5d2aa5ed936f8571593567b
BLAKE2b-256 45a768b046344399f7e64b2fdaf57cd62af6db01cbce69300f6f6abb6878e6e0

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: scipy-1.9.1-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 29.9 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 71487c503e036740635f18324f62a11f283a632ace9d35933b2b0a04fd898c98
MD5 0f6312acdf5edf5a6a5d2bf453e1c6cc
BLAKE2b-256 fedecaec3ae06f5380b8c91518f119f9b113a2da0619f7d8d8937b8ee517a29e

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 39ab9240cd215a9349c85ab908dda6d732f7d3b4b192fa05780812495536acc4
MD5 19aa6604a3c39cbcc58f7a626e3fad89
BLAKE2b-256 26a0f2b56f2404a47c225d5ad51a2c46f8ca673524800d41b14473c421d0924a

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 38.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e8fe305d9d67a81255e06203454729405706907dccbdfcc330b7b3482a6c371d
MD5 bc421013525427036272cafa47c41f71
BLAKE2b-256 2ee50e7e044d2ce9c7ebb18c3ea3c5774626780920dd42b48d0292017f7b6eff

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: scipy-1.9.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 34.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b97b479f39c7e4aaf807efd0424dec74bbb379108f7d22cf09323086afcd312c
MD5 673905ce31524d16e5d44e600c48ff4d
BLAKE2b-256 f1e085e231371444e7765a194c24ccecc40431b651846949beaa8feaaeb6d270

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34441dfbee5b002f9e15285014fd56e5e3372493c3e64ae297bae2c4b9659f5a
MD5 fa1872fdcc63b57b95bffdcd2142a54e
BLAKE2b-256 6f7caa0abf51b2f68b97135e5a25938c4040a718a181b8d4602d0e2df3915e5a

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0419485dbcd0ed78c0d5bf234c5dd63e86065b39b4d669e45810d42199d49521
MD5 ad0b411b353608b9fdd2fb3da25dd9ef
BLAKE2b-256 617b3b169b59780e4e4e5e68be849f655c10c91b207a9467ed65767d4544e043

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bc4e2c77d4cd015d739e75e74ebbafed59ba8497a7ed0fd400231ed7683497c4
MD5 cffdc85788b0d11e00f5c055e303538e
BLAKE2b-256 cdd8ee6a26bb696499d0150fceac75b9588575258e05f03069a41744929a99b8

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c6f5d1d4b9a5e4fe5e14f26ffc9444fc59473bbf8d45dc4a9a15283b7063a72
MD5 5cb2848a03030d3cec82a406b6d032de
BLAKE2b-256 590bad6e48b327d475da8ca567b9af13693a9d671818bc36d4c54481966f7435

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

  • Download URL: scipy-1.9.1-cp38-cp38-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 29.8 MB
  • Tags: CPython 3.8, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 eb954f5aca4d26f468bbebcdc5448348eb287f7bea536c6306f62ea062f63d9a
MD5 3e07b61125901375f3ab99766465a428
BLAKE2b-256 25ca92ab7808944ccfb5847fa51d892948229bf1d4f2a2ef47821c99e5f76b06

See more details on using hashes here.

File details

Details for the file scipy-1.9.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a412c476a91b080e456229e413792bbb5d6202865dae963d1e6e28c2bb58691
MD5 3f85c3d508fced31f420ea31dccb1f83
BLAKE2b-256 8b1a2f0481c9b54c1f48dcad24f4ab4840518edbc33a6a19a8321dda1447b9dd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page