Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.11.1.tar.gz (56.0 MB view details)

Uploaded Source

Built Distributions

scipy-1.11.1-cp311-cp311-win_amd64.whl (44.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.11.1-cp311-cp311-musllinux_1_1_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.11.1-cp311-cp311-macosx_12_0_arm64.whl (29.5 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl (37.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.11.1-cp310-cp310-win_amd64.whl (44.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.11.1-cp310-cp310-musllinux_1_1_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.11.1-cp310-cp310-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl (37.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.11.1-cp39-cp39-win_amd64.whl (44.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.11.1-cp39-cp39-musllinux_1_1_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.11.1-cp39-cp39-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl (37.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.11.1.tar.gz.

File metadata

  • Download URL: scipy-1.11.1.tar.gz
  • Upload date:
  • Size: 56.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.1.tar.gz
Algorithm Hash digest
SHA256 fb5b492fa035334fd249f0973cc79ecad8b09c604b42a127a677b45a9a3d4289
MD5 aa8dd068d4307e76b9c4dcc8446c5288
BLAKE2b-256 a698fceb84466a74b8fe74ce2dcc3a0a89cb7b4a689d4775e0fb4c95f335ef6a

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 44.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ffb28e3fa31b9c376d0fb1f74c1f13911c8c154a760312fbee87a21eb21efe31
MD5 b73a6e1a5cf1bc2ad5aa8a2dc99ad194
BLAKE2b-256 04b8947f40706ee2e316fd1a191688f690c4c2b351c2d043fe9deb9b7940e36e

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 249cfa465c379c9bb2c20123001e151ff5e29b351cbb7f9c91587260602c58d0
MD5 9cc5e6100de5f3d5cef21ccbba6693e1
BLAKE2b-256 6cb2137a6596e8169baa80404cd5b39f0a2e0f2854cb325b1ed4e53646c4f904

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4bb943010203465ac81efa392e4645265077b4d9e99b66cf3ed33ae12254173
MD5 4cc3bd0a1be2457471d017eeed54c7aa
BLAKE2b-256 b8461d255bb55e63de02f7b2f3a2f71b59b840db21d61ff7cd41edbfc2da448a

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cce154372f0ebe88556ed06d7b196e9c2e0c13080ecb58d0f35062dc7cc28b47
MD5 a8d56936cd49c8e903c798133f5e065f
BLAKE2b-256 2b0cde85883a6eb3f2473367f48a3f3f37c5ba71d54e655356ed6a18d2475b99

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 512fdc18c65f76dadaca139348e525646d440220d8d05f6d21965b8d4466bccd
MD5 044ce4958fe3640a9415f0203b1cc0be
BLAKE2b-256 db8d6419a5a65a538791f49d52cd8f8883bd11b41df0c9d35f500c9650f1e0b7

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba94eeef3c9caa4cea7b402a35bb02a5714ee1ee77eb98aca1eed4543beb0f4c
MD5 e82b0d4dd2f7f71f0a4ed6360c77954e
BLAKE2b-256 c709c07278f3c75018f80288032b09acd76aa4c2056cdb7fa9b0a145bac6b06b

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 44.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e866514bc2d660608447b6ba95c8900d591f2865c07cca0aa4f7ff3c4ca70f30
MD5 8fb76fe2d1b7e45ec16f39a3d50748bb
BLAKE2b-256 cee450b6fd4a2b65222424646abf17830904c9190bdd2c8daa7aeec083273903

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 08d957ca82d3535b3b9ba6c8ff355d78fe975271874e2af267cb5add5bd78625
MD5 508a6c71a1d8c040646fdc91d7b2067f
BLAKE2b-256 96dee5ff31878b1a6dc0b7a3977a4ed53720d7133fea207eae0e0bc7ba2056ae

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 366a6a937110d80dca4f63b3f5b00cc89d36f678b2d124a01067b154e692bab1
MD5 e48d61b72e9af960387b5249a7c3fd37
BLAKE2b-256 14f210fa23f0a6b9b2439c01579ae4a9b1849d4822e972515c8f92584bfda5e9

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3e8eb42db36526b130dfbc417609498a6192381abc1975b91e3eb238e0b41c1a
MD5 e3943627bc04c4b2cd5bbc8c46928199
BLAKE2b-256 49b9522554f215ed3a5f95dd6d9c86179eff9b7136001391b11ac3cf3fe3162c

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3b9963798df1d8a52db41a6fc0e6fa65b1c60e85d73da27ae8bb754de4792481
MD5 9619336484eb1f39799a771456882cb0
BLAKE2b-256 699dc6877258056c94027cae871fb5bc220edbaab5be2d6f6bc7e6081164b038

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aec8c62fbe52914f9cf28d846cf0401dd80ab80788bbab909434eb336ed07c04
MD5 aca7e7047ecb15a0a8fbdc6704ba88ab
BLAKE2b-256 b16467efd36ed232b9b107ad8435d0f0ebec28e5e6f782ededbd1ab4a37a0100

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 44.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 be8c962a821957fdde8c4044efdab7a140c13294997a407eaee777acf63cbf0c
MD5 7e0c3c4d0b37a346b28cfd9f66e22b9f
BLAKE2b-256 969b10048be0c335327077af430c5a6637c0b9e7fe9121a8048836f1bb022a81

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 396fae3f8c12ad14c5f3eb40499fd06a6fef8393a6baa352a652ecd51e74e029
MD5 1b652ed5b032737fcb56ef58f2158f6b
BLAKE2b-256 9ea43136060c6cb485b1517fac5d8e4aa2cabeaad728aea827dc6ed251af5d92

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b41a0f322b4eb51b078cb3441e950ad661ede490c3aca66edef66f4b37ab1877
MD5 9c90f85da178c4d9dc6d795f1ebd1151
BLAKE2b-256 0825035fe07fc32c5a8b314f882faa9d4817223fa5faf524d3fedcf17a4b9d22

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d51565560565a0307ed06fa0ec4c6f21ff094947d4844d6068ed04400c72d0c3
MD5 7eff7b1508f1ebbcc9f99aba48531677
BLAKE2b-256 7ab14fc1e4135f7e98cb04d444170199949fe842e5dc3b9d35c57baec802b55b

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b588311875c58d1acd4ef17c983b9f1ab5391755a47c3d70b6bd503a45bfaf71
MD5 fcc109d0a300aaf982854b13208381fe
BLAKE2b-256 d8973a15209262cf523dab38de372ff814f8fb7815f98ccc07c7996e77910612

See more details on using hashes here.

File details

Details for the file scipy-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 39154437654260a52871dfde852adf1b93b1d1bc5dc0ffa70068f16ec0be2624
MD5 db9b049b05206fb30b10ec247d959d94
BLAKE2b-256 7f0ea3670cee9cfdb3433f89c75c8b368bea621aa8f60a3a1eb7a9d5ff72ada2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page