SciPy: Scientific Library for Python
Project description
SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for scipy-1.6.0-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 313785c4dab65060f9648112d025f6d2fec69a8a889c714328882d678a95f053 |
|
MD5 | fe7ddd09cdc2263f8ecae6001b41f963 |
|
BLAKE2b-256 | 84463e00383d9588f941b83ccd43ef42bdf2ae1c8568dc0ac999480c035da532 |
Hashes for scipy-1.6.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | aef3a2dbc436bbe8f6e0b635f0b5fe5ed024b522eee4637dbbe0b974129ca734 |
|
MD5 | ad70a68d2e5190c5bda723fabc877bbe |
|
BLAKE2b-256 | b0925529cb45aec68a4a476c05e25649bad2e7420a48f4974e67333c0f18a2e8 |
Hashes for scipy-1.6.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d902d3a5ad7f28874c0a82db95246d24ca07ad932741df668595fe00a4819870 |
|
MD5 | d9d9aa57714f58da02b3cb539d3bab7e |
|
BLAKE2b-256 | 253d7a43e2cd121c342313bbb6909327b62123ee324b6afd47a021970ea3ef14 |
Hashes for scipy-1.6.0-cp39-cp39-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f68d5761a2d2376e2b194c8e9192bbf7c51306ca176f1a0889990a52ef0d551f |
|
MD5 | ac6f387bcfff36b1909783b9e78173c1 |
|
BLAKE2b-256 | fe54ddebb5266ee847f97b117e141060ad219b54297db5ba75fdf966b663bc59 |
Hashes for scipy-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 155225621df90fcd151e25d51c50217e412de717475999ebb76e17e310176981 |
|
MD5 | 7653cdb2672fc5bd9609947f05a1a9cf |
|
BLAKE2b-256 | 9b2b6e1063b742ca49bc0f4fa19107e181a13b08f5118ceed4d5827d9df616f5 |
Hashes for scipy-1.6.0-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f1c2ebca6fd867160e70102200b1bd07b3b2d31a3e6af3c58d688c15d0d07b7 |
|
MD5 | 3a1ff95d9ea373196d3594df2303bfff |
|
BLAKE2b-256 | a1059b41f6a969a0d6ad36732bdd3c936434228dafaa829932be5a51574e4958 |
Hashes for scipy-1.6.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | eb7928275f3560d47e5538e15e9f32b3d64cd30ea8f85f3e82987425476f53f6 |
|
MD5 | e03550991ed048d919cbe75b8687dab5 |
|
BLAKE2b-256 | a0a6f6c1f65886b35be85d5307d6ea616956145934c19758382c138e84c7293a |
Hashes for scipy-1.6.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f1d9cc977ac6a4a63c124045c1e8bf67ec37098f67c699887a93736961a00ae |
|
MD5 | 54e934334700a16d84a62b3cd375085c |
|
BLAKE2b-256 | 13b3acd7b4e4c78a9b56ff9739ca77f88ab7950e8e4d23cba4382480b5365e45 |
Hashes for scipy-1.6.0-cp38-cp38-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b8af26839ae343655f3ca377a5d5e5466f1d3b3ac7432a43449154fe958ae0e0 |
|
MD5 | 7e7d04505b315c4cc4567ddca2c9f160 |
|
BLAKE2b-256 | dd9fabd9da9b4675c7b9fb8a4ce239777499aacd2f94f1ea348e2a99e70cea77 |
Hashes for scipy-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0911f3180de343643f369dc5cfedad6ba9f939c2d516bddea4a6871eb000722 |
|
MD5 | fef87b2e8d82638af89c7ff0820033f9 |
|
BLAKE2b-256 | a57b59d61c0928b00ac391917590e256a57f18797e6794a823d0af7ac53c4df9 |
Hashes for scipy-1.6.0-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 876badc33eec20709d4e042a09834f5953ebdac4088d45a4f3a1f18b56885718 |
|
MD5 | b7bcb35ae551a0d78139ed5a8f11fbde |
|
BLAKE2b-256 | 7b24fd3559958da2d79157142031bb465b050d3965afa2876b90f3d458d744f6 |
Hashes for scipy-1.6.0-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 58731bbe0103e96b89b2f41516699db9b63066e4317e31b8402891571f6d358f |
|
MD5 | 0f60495e80fd143419c594238b1c9f0a |
|
BLAKE2b-256 | 540e845aa28142561a8887376c1c3b2f3ab2cbb4d702b0fa7e7ae409b30ac907 |
Hashes for scipy-1.6.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8629135ee00cc2182ac8be8e75643b9f02235942443732c2ed69ab48edcb6614 |
|
MD5 | 80adc50489f2d1f3f84c71629a7f0233 |
|
BLAKE2b-256 | a2b2058047fef2ece46ccc0df70fb63c9abe0ccfaa1a7e0d00b6c7da40fb413c |
Hashes for scipy-1.6.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8840a9adb4ede3751f49761653d3ebf664f25195fdd42ada394ffea8903dd51d |
|
MD5 | 6df40fd888aacc66c7fa2f905fdc3c8b |
|
BLAKE2b-256 | 589d8296d8211318d690119eba6d293b7a149c1c51c945342dd4c3816f79e1ba |
Hashes for scipy-1.6.0-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1bc5b446600c4ff7ab36bade47180673141322f0febaa555f1c433fe04f2a0e3 |
|
MD5 | ab345b6f61228d8d797083fbe4ecb9df |
|
BLAKE2b-256 | e450ad9d07227e063f4d8780318e673f12721d8f81fc0a9c18eb8d1e2ac2ccdd |
Hashes for scipy-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3d4303e3e21d07d9557b26a1707bb9fc065510ee8501c9bf22a0157249a82fd0 |
|
MD5 | 8fd605d90e571560d33eecb3c2263abe |
|
BLAKE2b-256 | 33a46469cbec8e5ac5fe26c5ccbdcccbbf6a6c0aab7968fcdeac617c8704dc51 |