Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.10.0rc2.tar.gz (42.4 MB view details)

Uploaded Source

Built Distributions

scipy-1.10.0rc2-cp311-cp311-win_amd64.whl (42.2 MB view details)

Uploaded CPython 3.11Windows x86-64

scipy-1.10.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

scipy-1.10.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

scipy-1.10.0rc2-cp311-cp311-macosx_12_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.11macOS 12.0+ ARM64

scipy-1.10.0rc2-cp311-cp311-macosx_10_15_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

scipy-1.10.0rc2-cp310-cp310-win_amd64.whl (42.5 MB view details)

Uploaded CPython 3.10Windows x86-64

scipy-1.10.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

scipy-1.10.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

scipy-1.10.0rc2-cp310-cp310-macosx_12_0_arm64.whl (28.8 MB view details)

Uploaded CPython 3.10macOS 12.0+ ARM64

scipy-1.10.0rc2-cp310-cp310-macosx_10_15_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

scipy-1.10.0rc2-cp39-cp39-win_amd64.whl (42.5 MB view details)

Uploaded CPython 3.9Windows x86-64

scipy-1.10.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

scipy-1.10.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

scipy-1.10.0rc2-cp39-cp39-macosx_12_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.9macOS 12.0+ ARM64

scipy-1.10.0rc2-cp39-cp39-macosx_10_15_x86_64.whl (35.2 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

scipy-1.10.0rc2-cp38-cp38-win_amd64.whl (42.2 MB view details)

Uploaded CPython 3.8Windows x86-64

scipy-1.10.0rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

scipy-1.10.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

scipy-1.10.0rc2-cp38-cp38-macosx_12_0_arm64.whl (28.8 MB view details)

Uploaded CPython 3.8macOS 12.0+ ARM64

scipy-1.10.0rc2-cp38-cp38-macosx_10_15_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

File details

Details for the file scipy-1.10.0rc2.tar.gz.

File metadata

  • Download URL: scipy-1.10.0rc2.tar.gz
  • Upload date:
  • Size: 42.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0rc2.tar.gz
Algorithm Hash digest
SHA256 033f9188fab30a2e05a178b30e305bf811d73a3d03461395682023550dd98ed6
MD5 8828f5071db0a1278d256a72749fc029
BLAKE2b-256 6ba37de758a32569e06877a6b298bdf7b529ce97a33c55deb2b1637b0162fd9d

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.0rc2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 42.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0rc2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4036d9f14d2d5c4620df2da26251ce733d9b8fdbab598fd1958a2ae99ce73337
MD5 51711cb9d3925666f2271ba84c2aa7ed
BLAKE2b-256 467a8372c3b79950c45c60b60e375c654e7d1f0f3275774373e28f6a03215e42

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9d3f1dac908bf0328d77721f2f4cf833e6286f5b62049b7741ce15d134a0341
MD5 c09a162b1c3a8e98dd30a1ca024492a0
BLAKE2b-256 4fef5de341312d3fa4b9a5fdafbd1a226a12e600635a5d4cb3acd9bf2dba8342

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0688f0054bce454f48360ccbf976eea5b560a88e7fa88d502b9bd48cb55b044
MD5 653c7a66c41372d967be08cfa2972060
BLAKE2b-256 2f9860202f5127c456672d5691dadbbaf0fa46542d86707e8495ca9f8b8a7158

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2ac16d71fe26a3d76b80e97dc1be8ad3157ec11076d47b4cf255b88166b29af1
MD5 45eb6f97da8c1843e547854cc68d9ccd
BLAKE2b-256 d392ae574437ee92dfda058234c549478ba5617eb6eea7b7bad9cbe93e4988a0

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3549ae512f98e20aeb9fde6f9a66cc375515abb5843d3f4ce3cdaf755f6071e1
MD5 1aa350e0e1247dfd1509295e0a5387c9
BLAKE2b-256 a614e05e8f46e93b5299f397a9c58fc331680b2833853d2c67bf865e0e88727f

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.0rc2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 42.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0rc2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2a95aad87d046262c6df9b1109b60a8c18617fbc8244933eb2bdf4c8126fc0ec
MD5 e2fd230ae39c546783774a51f60eaf3d
BLAKE2b-256 1c6e02003333f7d3139a7e0643b32183c92072a79b689adad909102460b440c7

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b4d926f7906b58e50ec1fb9735758eb6f66311bc3eb5f94b75be0e18a1129f3
MD5 89a909aee296dd1eb03ae53b8b213da4
BLAKE2b-256 5b9ac5b9a1f4d12c47d9c94a9cc0831d4e8b0af24b48ee3e9387fe5df07bc9f7

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 31a4e9ea74e39be8a5053241ac431dee5f013ddc2dd447d047212a9eadcb0d83
MD5 ef197f95beee9753ad963b5f48bceda1
BLAKE2b-256 00ece3a169fd041125ab7bc50c4b3a9d497d9559d5b42cc8a1c1b10505dbe9c4

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d46d17505f3bc87ea544ac44db7d31a747450e38b78782b94b649d08a0ce4c4b
MD5 20fedfe540d7b3b9421ab13f499caf35
BLAKE2b-256 836e78fc7b57c278fd2ba03cccf624f1d3388f7ba38cfa007d3f2d56902aee38

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 619036ab243938dc98449121848c5f74154cfe689e5305dbe1ea314d88d03f4e
MD5 f31fbc75625cbf06ac788de2e63311d0
BLAKE2b-256 a0075083ff5fcc17995f129434336c6af561888ee7ff3762528b116111f398ef

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.0rc2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 42.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0rc2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3a8a5fad0286bc925f425f317f7587908942cbd28924a96441d207323ad14870
MD5 7730d222b5bc0d84afc04690f9ac3ee4
BLAKE2b-256 a3e4ed644a8066ed99d8a5bdcd34b1ea3a706663db41ceef433e755cf421a7d5

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ac5c9810c2bf6ee2da46d4788f9d02b6014cdc335b0094727a1b2ce48f15778
MD5 d3ec9369e7674ae1fba80b2249f4aa52
BLAKE2b-256 d74e580b4ff9647c1696fc6f701109737641190a8dc298235fde47932cd4d9d6

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 46c0697053d77d50c24ce4b9af9b30a0e31e07b9aaae288556e4f5da4e9fd0c7
MD5 9287b54c21a3f8d163989345bb68b7ed
BLAKE2b-256 02602bcb52bb8c55c4697aabe6be3193c5a80cf6f07aa3beb5c88076e5460de3

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 62365410933f1e5f5e8b8d9c4bb1afecaecc51851b0e270bd4e28ee849fc75ef
MD5 8130e4b8d51dd7b321c21fd948304d47
BLAKE2b-256 9f5321d2e7ebfd987adeed3079f84ff763ad6135306cc6989bd695f1e2b8d56d

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 16c6679bfcc6415b96792f2008877c3728ca6776c0c2b40d08cef7ceb2c60855
MD5 4252ff6058ca9a1d0ed4b61745b3cb0c
BLAKE2b-256 2f71374de3c6ea4ed61eb627ea4a9c976c1d32750a37b321d4b0533e507825b9

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.0rc2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 42.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0rc2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1b1912b3d5ec6cb412c2dc81a0abe12a72404d1ff5494997fc8c7444be5aa057
MD5 efb46dc240ceeaf510b5b75204e8be25
BLAKE2b-256 286070e5dd5c1d7e5caae39fda2ddfafe85c0786c9abb112da02fb8d118af94e

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43423999c7e5a90c442b8d6f29f9bec5e00db4d6b1a19f6fbb3c4e90a408a3c4
MD5 0f2eb143487aa340cf2807051794a734
BLAKE2b-256 e79a9f5b67c01173e4dbdfd62b7930339d768490cab71382388517090f8c7e46

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d2f3c6b3a3f7bcc03420e416b7430863bf2a0b40a0d8fdbb005058a486f5f11
MD5 a0d3b0e6a375141b1779423e51c61f0c
BLAKE2b-256 4cefc4c784518d9d08b108cd64e0501abb04de6f7ea50a09244e20fc603b6d11

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 6f92493eef6471fec8b6998b6dc2ebec3102e0be84cb6182f3e9275cda9446a3
MD5 bd2f04d048cf36dacd9ab96aeab81bf4
BLAKE2b-256 389d3daff748aa96a2715c8045bc6aebbfa7b3fc6c2a93b7f2b988be3f6e7e10

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc2-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc2-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7031fd320773d822276d12cb6cbf86dfb63a34ccdfcc2c0abca34c6cfa86f254
MD5 d9f87ca8b02b0fad07fce2c958af7ea4
BLAKE2b-256 2f1e01512add2182e35575af55838e4b3d71acc31814bb866c2050f3f26b692d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page