Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.18.1.zip (14.6 MB view details)

Uploaded Source

scipy-0.18.1.tar.gz (13.1 MB view details)

Uploaded Source

Built Distributions

scipy-0.18.1-cp36-cp36m-manylinux1_x86_64.whl (42.5 MB view details)

Uploaded CPython 3.6m

scipy-0.18.1-cp36-cp36m-manylinux1_i686.whl (36.1 MB view details)

Uploaded CPython 3.6m

scipy-0.18.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (22.2 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scipy-0.18.1-cp35-cp35m-manylinux1_x86_64.whl (42.0 MB view details)

Uploaded CPython 3.5m

scipy-0.18.1-cp35-cp35m-manylinux1_i686.whl (35.5 MB view details)

Uploaded CPython 3.5m

scipy-0.18.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scipy-0.18.1-cp34-cp34m-manylinux1_x86_64.whl (40.2 MB view details)

Uploaded CPython 3.4m

scipy-0.18.1-cp34-cp34m-manylinux1_i686.whl (34.2 MB view details)

Uploaded CPython 3.4m

scipy-0.18.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scipy-0.18.1-cp27-cp27mu-manylinux1_x86_64.whl (40.3 MB view details)

Uploaded CPython 2.7mu

scipy-0.18.1-cp27-cp27mu-manylinux1_i686.whl (34.3 MB view details)

Uploaded CPython 2.7mu

scipy-0.18.1-cp27-cp27m-manylinux1_x86_64.whl (40.3 MB view details)

Uploaded CPython 2.7m

scipy-0.18.1-cp27-cp27m-manylinux1_i686.whl (34.3 MB view details)

Uploaded CPython 2.7m

scipy-0.18.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (21.8 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file scipy-0.18.1.zip.

File metadata

  • Download URL: scipy-0.18.1.zip
  • Upload date:
  • Size: 14.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.18.1.zip
Algorithm Hash digest
SHA256 a4ff670a812ba782dc28c6e8eeeb8c89c8f1e213b364b972af595f73bd071a1f
MD5 99127abce294eaf76eafb80ef431bb9b
BLAKE2b-256 f88537e205d2c48a9691078bd3cd6b22237e399dc1ba049d31ba8e57da44b5be

See more details on using hashes here.

File details

Details for the file scipy-0.18.1.tar.gz.

File metadata

  • Download URL: scipy-0.18.1.tar.gz
  • Upload date:
  • Size: 13.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.18.1.tar.gz
Algorithm Hash digest
SHA256 8ab6e9c808bf2fb3e8576cd8cf07226d9cdc18b012c06d9708429a821ac6634e
MD5 5fb5fb7ccb113ab3a039702b6c2f3327
BLAKE2b-256 2241b1538a75309ae4913cdbbdc8d1cc54cae6d37981d2759532c1aa37a41121

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 790614fa23eb6ed86619e36be586e88ac4231770be1b5b0d3629e34ba8381ae1
MD5 3a2cfa79c7d3d8b1bc520e36f947a648
BLAKE2b-256 74c0f0bf4eaef1b6aa7bdd1ae5597ce1d9e729417b3ca085c47d0f1c640d34f8

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fd7a87c195786ddf3f6b2d82afb38d89e5d55b7494bcd41d05d48ed0c419c4b5
MD5 8a5ccf374b122647601ae02350c6c115
BLAKE2b-256 975f18714e4ae759fd5fef643c8f578fbef1a513f5302681a3b20f80f09700c9

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a3a9c7b0edebe4fa99d970e0115b7f7b0f2a1e1377c2f1bc2272b9320c6f7beb
MD5 8d631a14bdbc435a077dc5c0613c7630
BLAKE2b-256 62245ba8aeb4a3f49f5d34926ee19e02ac4dda1a7f4ff6ef96bd2597ddb0e11e

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f4a44eca35beb2bf479a61cb7d8609ee944d4b516ae462978bc96a240f3019cd
MD5 e3855590d4627e70b683689f8b6b0c4e
BLAKE2b-256 f5a887c83acd5899c8017a220092a09fc54f89150130683ba1d2e14aafe898f4

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 280eb739c0922f95c4f060335b96b9d00321e4eadebf0921e2688d884fdbfda4
MD5 9e371961e6fe186c1628c32922c2b7ee
BLAKE2b-256 b0bf3196bb46c8fccee9b2c6964d5de1d1ac2414262b8aef8c5bea4514d9587a

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a2a9b3102c708930068ab48c3ec6f36b01f28004e8257fc33b77d88b55e6bb30
MD5 ea91cccab7b404e2b65a077bc6919eac
BLAKE2b-256 26cf52c326bbecc804e038e80c633255d57123aaa88a3777f404eeb55633dd5a

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 166d9b7e3e1d3609afeee124473973707343f8dec7e261d449393cf9ad019147
MD5 6fce0af205db550c29939d4fe8b6152d
BLAKE2b-256 596cf70014a506b25fde32580f9398c16d5b20d52ec3ae6fc16302df9e68b361

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2380111b9e2d4d8c03a59880577e3236520ed19d1a0fca051d2b5e273047ff71
MD5 9e3fabf0f49497ddb65b814cf9415edc
BLAKE2b-256 dc169560208cb7b34c67f1f0260bbade755869586bccc88c92011e3c12d3fa47

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a23f7794304c759df0cf1319b872f2ca6d6074788292b93d477cff2adbf6a0b6
MD5 bd831c36d4d844f9ffbbc76232827394
BLAKE2b-256 8a2ecd53468ce7d2d6f85f321265238d5f5cca846af448621042fc6b7ab31a21

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c69009a29be719e99c0c85296aff955326c7cde280925f83a4dd5ce7f18a22fb
MD5 8819378eceb1d7a51042031a7846f394
BLAKE2b-256 13cb8e74d28e1519b34636e4d985d49d01c23778064e01eb102914f844cd6051

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 96d13da742d8bf46cd2264c23d006d409655615c4120a01c5458a8f9bf814fbb
MD5 7452b4b60be13fc3a1dc6766a0b43918
BLAKE2b-256 2fa7743bc344a197ca0301601f3de895210bf78169f34583040cd83a086fae33

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7558c0fa12e26d984ad82bd7a619994f4b3793c639a3137444b1347bcf50b1c6
MD5 5b28b40b84a9123e0b54a13fa410e967
BLAKE2b-256 724144846a3c6f83b9d884f964d97b3cf4934078b65beecc741508d83613daa0

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4167f9dc53703aa74f4d8b3699f5346560954e498dd9185d65448bce9656e124
MD5 7a541112a84eb103a9e67087fdb103a6
BLAKE2b-256 3f526fa39a8c03610e68be9e1c5c0b8dfe8fc4b0981a7789447aed79efc8dc2e

See more details on using hashes here.

File details

Details for the file scipy-0.18.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f97b4de9be61c6f458ab2b804e74bfffc15d8f77964772006971cd6bc6e25f0d
MD5 91cbcf832f13e139950cc2ee1395b461
BLAKE2b-256 0d6d953ec7721b3addfe36b55f77ba6b70ffddcfa66db427816954b43bd85e65

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page