Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.9.0rc3.tar.gz (42.0 MB view details)

Uploaded Source

Built Distributions

scipy-1.9.0rc3-cp310-cp310-win_amd64.whl (38.6 MB view details)

Uploaded CPython 3.10Windows x86-64

scipy-1.9.0rc3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

scipy-1.9.0rc3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

scipy-1.9.0rc3-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.4 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.0rc3-cp310-cp310-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.10macOS 12.0+ ARM64

scipy-1.9.0rc3-cp310-cp310-macosx_10_9_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

scipy-1.9.0rc3-cp39-cp39-win_amd64.whl (38.6 MB view details)

Uploaded CPython 3.9Windows x86-64

scipy-1.9.0rc3-cp39-cp39-win32.whl (34.6 MB view details)

Uploaded CPython 3.9Windows x86

scipy-1.9.0rc3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

scipy-1.9.0rc3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

scipy-1.9.0rc3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (38.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ i686

scipy-1.9.0rc3-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.4 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.0rc3-cp39-cp39-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.9macOS 12.0+ ARM64

scipy-1.9.0rc3-cp39-cp39-macosx_10_9_x86_64.whl (36.7 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

scipy-1.9.0rc3-cp38-cp38-win_amd64.whl (38.6 MB view details)

Uploaded CPython 3.8Windows x86-64

scipy-1.9.0rc3-cp38-cp38-win32.whl (34.5 MB view details)

Uploaded CPython 3.8Windows x86

scipy-1.9.0rc3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

scipy-1.9.0rc3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

scipy-1.9.0rc3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (37.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686

scipy-1.9.0rc3-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.0rc3-cp38-cp38-macosx_12_0_arm64.whl (29.8 MB view details)

Uploaded CPython 3.8macOS 12.0+ ARM64

scipy-1.9.0rc3-cp38-cp38-macosx_10_9_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file scipy-1.9.0rc3.tar.gz.

File metadata

  • Download URL: scipy-1.9.0rc3.tar.gz
  • Upload date:
  • Size: 42.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc3.tar.gz
Algorithm Hash digest
SHA256 b3b14c1d6c79c1c8edbae120c4b87c863907805e187e17a38de5f72f1735769f
MD5 8f838833943af35aac2d90d9b94e5b34
BLAKE2b-256 5772484c38e5b814b48b41ac6432ef69077f2e7c8094925d3ce17bc3d61359b0

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.0rc3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 38.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f51b051ce3c66cd529ae07c0af87f2804f54ecf14a5fbded0021a7b4579e94ee
MD5 f8ef1a84f83a4ce30932071571ac9dcb
BLAKE2b-256 84098e986a9783d6cf108b8303d25e5238644d10f7ac846fb7343c7e0fb4c3ff

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a3273724612819da49f975ee3cf14b9910aa0eaab2e23eea1d502702c939a48
MD5 032e8f219ce8453f711d42ad4760cc01
BLAKE2b-256 f1afd36488e859b4a0ee850a659ab4e653fe5cb189487dc3e513112595f061f5

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b67129931ca84fc8f0b9f1224ad88b19f2a4e4cbb98d54af254ed1ee0f423a07
MD5 24760e5ce5f166871ccbf3a8581ce654
BLAKE2b-256 2c0c6c80648cd81f531e1624f9b7d17bb78311353fee2e783541f5137ef7e7fb

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93114c9292841406e27c0fe2b5c00d2de1cbd1ec3a4343c8ecf961cce17872c5
MD5 e4f15b904bffbebffb5087eb1e8df6eb
BLAKE2b-256 54130127536289fdc6aedd989692fcc689cd2497621821cb37cfb7d892a2e3c6

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ffefbadde5afdc8c3003b77e1cc7845a996c8129a2012eff1b3b78074cb25ef9
MD5 dfd33ee3da6e50dacdb9c4ef63ef5ec8
BLAKE2b-256 4af217fda5ef38864c9e4c68085857fd728ad86c9157c90dce9df41e381468ae

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6997d0d2cb1bcc57d9ea3d607c5f1227f4abe7dd15807911071825de06aafb15
MD5 a59b8932fad6c66b610f730ce2784bda
BLAKE2b-256 869af6fbe3f2b41ad9c9cd8d039c594d6c4c1da4b4643fe2ab8afb883eabff4b

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.0rc3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 38.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c24930b712cd7dc3a272776ea4150b0c4a2acc5a2868ece6e70acce5b8993820
MD5 f93b82c3bf5d2f4214b585ad61645554
BLAKE2b-256 efed5501556277eb5922c97f21fdefb8b73d6b753bcdbd2c0f178d55ea09634e

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp39-cp39-win32.whl.

File metadata

  • Download URL: scipy-1.9.0rc3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 34.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ea6659b8360184883e5193acc5de2c2277bc62bccabb953d48d9fc57ad228c5a
MD5 9789cebc1c583da99f03b27008122bc0
BLAKE2b-256 a5f5bcca00df3f748792192be116e9f1be6b230ab8a427038ffb92527ae0a641

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c28481580f5778e7ae788d4219026b2cd62544ff379612423f4dbcb7ad9c46f
MD5 5d98a00cb55a0e3b8f789bd2a09062e7
BLAKE2b-256 1574fe04ae244edf8048f1e6fe800f432c667785b730b1346b177fceba5525d1

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f165c2074558e76f8e7e70e3fb2cabef2408936645327b8b0e906bf247cc728
MD5 ae214914e6d61482e859168c9da25c56
BLAKE2b-256 e3691e24b3ff155875d1232f64193b8207afa9ac8c918a08cd0c6adda5d9de73

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 320fa84c502b9aa77c4cfde2d973fa982b71ff06460d983904695f2b9d722580
MD5 c1375ef046ae7b6e720b6db7df332cea
BLAKE2b-256 48a007e04c9c632ce41779e6f61252a8e58822f1abb1df230ab84fc33faf2841

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 489d095a6f443aeeaea0e69bb4dfacceb8850870d33df9209fad930ea79639a5
MD5 b81b1eb5f77a370614284bbd36f69000
BLAKE2b-256 b705c34c340653dbacbf50bc2fa5a0163e56aefadc2e2a09efcc598385af7c10

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 fc9ba93ddb04fac40fef8f53a1d752da75492ec17cbf5c451b1102e257fd39b8
MD5 102aa925878743ae61545fa12db4b2b5
BLAKE2b-256 fa5376581ff243fd2d1902f3a54fd4a116429d18cb06cbc2813a3fc2a35d37f0

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9704b7362b2e8cab80c273c07d3a6dacc0270c8e71f88bef052fa7b4ed280505
MD5 38e13d08433ecfa671c159796a0eea21
BLAKE2b-256 f790a5e7f46e2290a94438c35c62a51e8afaf481e77e2c43a8397cb18994aa77

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.0rc3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 38.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 73cc5b3392982c2bcdf6ee5c129b45eda257a18752655281942febc4aa088d76
MD5 4457a58772123e94daa391c4d4ccf8b1
BLAKE2b-256 62d98416ac1fd9c09537a39a1de954c2c19ff3f7c2e7d15411213478ac4d4fa9

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp38-cp38-win32.whl.

File metadata

  • Download URL: scipy-1.9.0rc3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 34.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2454ed30f47dda09c07057e4da368215836e0b5f9c4ce1b81fd96e95b1128fa7
MD5 5678b3c5d0477ca660d92782930300b1
BLAKE2b-256 6876194fe2fbc988874146cfed006bd1b4e0274913028f4399190314a1a7ef06

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b99872fce4a87ce4a01c21c0f8c9d85bf21a21ac4e5c74a50b94143850a56e0d
MD5 e12b0be75f3c25b10364d08a63fb2a71
BLAKE2b-256 cac2fa7c58cc71cb6c1da69f2c9e3cdd1f7d3d258db282c341b5e963ed345816

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3eef55fb77e64437cc600a75c69f01902e385cfceae0bf3761ab1f99fb011a9a
MD5 1b696250efc865b255f1a956844de87d
BLAKE2b-256 7e23cecaf626bcafc7c01080d1274be0eb0776989ad9a3dc141f286babf0cd55

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 32c954e00e89c942611e327cbfb9e868228b55068983a18b6d87a956b76db891
MD5 4d6e63351fea24b860233e301ad78ff6
BLAKE2b-256 473118f92518a704879a1a85013fefe03e3faa3d3c79d5cf23c1e3594c248b1e

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc90b11627641bf89713496d0e6f5b391ba70c3ecf2634fa8c697c97b3ba038e
MD5 42ae57a94c10e780303d394c7f47da39
BLAKE2b-256 21541dc7ccd786975b9df6476f99e2a6955bc745a1b834a77f60c9709cfed22e

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a13eb973be297e64a8a6aa1537820357cd7810aa5bae1d9076531f3ba63fec34
MD5 2ee352d54072abaf6c244cfffc8b4ff8
BLAKE2b-256 464c7162aa6fd847d13de4a96ac36b39bd185dc523efeb0c9eea86f7518c5ef5

See more details on using hashes here.

File details

Details for the file scipy-1.9.0rc3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1b9120bf5e68d64de219a90f337a56de7f2e55c3c23fe85af785a6ff5932d4e
MD5 464887ae4a66f61a0d336380c37a5325
BLAKE2b-256 3cd1bdc129f0480c68b34f89788e1dd8ab2e65af7ac6b850ae24d538c6bf2087

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page