Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.11.3.tar.gz (56.3 MB view details)

Uploaded Source

Built Distributions

scipy-1.11.3-cp312-cp312-win_amd64.whl (43.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

scipy-1.11.3-cp312-cp312-musllinux_1_1_x86_64.whl (35.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

scipy-1.11.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scipy-1.11.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scipy-1.11.3-cp312-cp312-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scipy-1.11.3-cp312-cp312-macosx_10_9_x86_64.whl (37.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scipy-1.11.3-cp311-cp311-win_amd64.whl (44.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.11.3-cp311-cp311-musllinux_1_1_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.11.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.11.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.11.3-cp311-cp311-macosx_12_0_arm64.whl (29.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.11.3-cp311-cp311-macosx_10_9_x86_64.whl (37.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.11.3-cp310-cp310-win_amd64.whl (44.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.11.3-cp310-cp310-musllinux_1_1_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.11.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.11.3-cp310-cp310-macosx_12_0_arm64.whl (29.8 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.11.3-cp310-cp310-macosx_10_9_x86_64.whl (37.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.11.3-cp39-cp39-win_amd64.whl (44.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.11.3-cp39-cp39-musllinux_1_1_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.11.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.11.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.11.3-cp39-cp39-macosx_12_0_arm64.whl (29.7 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.11.3-cp39-cp39-macosx_10_9_x86_64.whl (37.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.11.3.tar.gz.

File metadata

  • Download URL: scipy-1.11.3.tar.gz
  • Upload date:
  • Size: 56.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.11.3.tar.gz
Algorithm Hash digest
SHA256 bba4d955f54edd61899776bad459bf7326e14b9fa1c552181f0479cc60a568cd
MD5 9f618e66c4b12b702793cdfd2b7b3847
BLAKE2b-256 397b9f265b7f074195392e893a5cdc66116c2f7a31fd5f3d9cceff661ec6df82

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 43.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.11.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 90271dbde4be191522b3903fc97334e3956d7cfb9cce3f0718d0ab4fd7d8bfd6
MD5 22effdc789f3f914f419bad614bc0698
BLAKE2b-256 f4cebe0b376ba6069f3f8ba240aa532a374733447453c93582d4c474effdde21

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 74e89dc5e00201e71dd94f5f382ab1c6a9f3ff806c7d24e4e90928bb1aafb280
MD5 e2cc2a1fa3240428402e5a147bd3f6c3
BLAKE2b-256 dcb2c58eb0e021696c46719f90ab970d0c034445e36180445c431feed3290871

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2f6dee6cbb0e263b8142ed587bc93e3ed5e777f1f75448d24fb923d9fd4dce6
MD5 4164b74ed3f7b5ff5682d5d0a37fbca0
BLAKE2b-256 c8aec1e5e9f7ace48e299d7eb05a4b7f1ca0c98961659945a0270a735e5a045a

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bae66a2d7d5768eaa33008fa5a974389f167183c87bf39160d3fefe6664f8ddc
MD5 3198a523b0bc2c44bcc0d3da38ae431b
BLAKE2b-256 85610b1298353028ae5080674a02a44ea2514decb7c87664007cd1e0c4822522

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0d3a136ae1ff0883fffbb1b05b0b2fea251cb1046a5077d0b435a1839b3e52b7
MD5 ab13a6a0119533426194072ba988d398
BLAKE2b-256 cb0e7e2c614d4c892e7fc9f44f4bf16a4661c7f9112f856c3a14f444e43a6ad4

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dfcc1552add7cb7c13fb70efcb2389d0624d571aaf2c80b04117e2755a0c5d15
MD5 82678417b8a11c4e636764fcfaec5629
BLAKE2b-256 e5eec5bc0d4b66a9c38165adf86e8b57be6f76868edf5ea23b3bbee3680e7edf

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 44.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.11.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e1f97cd89c0fe1a0685f8f89d85fa305deb3067d0668151571ba50913e445820
MD5 48ca42c3d6e8a380d76baa3ab40268e3
BLAKE2b-256 81d7d2537d51efb692d0c411e64267ba349e7668d40f5bc73cefe78ccd650dcd

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 91770cb3b1e81ae19463b3c235bf1e0e330767dca9eb4cd73ba3ded6c4151e4d
MD5 6d3781c9bb920311ba5ef791c62fe057
BLAKE2b-256 369569e32b4691daa6a6fe625d2e3724a39dc9b910c7860e739b583798d3d127

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f290cf561a4b4edfe8d1001ee4be6da60c1c4ea712985b58bf6bc62badee221
MD5 49bf268f522be17dc485097084d0e22d
BLAKE2b-256 ef1b7538792254aec6850657d5b940fd05fe60582af829ffe40d6c054f065f34

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00f325434b6424952fbb636506f0567898dca7b0f7654d48f1c382ea338ce9a3
MD5 2316f98543b94595e89680a5f07eed8d
BLAKE2b-256 fdbd2905516155dbca3f5ae793caa1954a77369dec42d49ac3a60ea749acd3db

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5664e364f90be8219283eeb844323ff8cd79d7acbd64e15eb9c46b9bc7f6a42a
MD5 77cbc738dcb07f61e21371ac0867c6f2
BLAKE2b-256 508b2057417a07a6fee8ed8be40e37bac4a502cae4cf44468a02962bbe81b8af

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 925c6f09d0053b1c0f90b2d92d03b261e889b20d1c9b08a3a51f61afc5f58165
MD5 c8d0048c75e8c3bbb89867138446c716
BLAKE2b-256 b1a6b6d66d4f4045ba59200d25f254ccd63340162c903f95231e3ae6863fc4ae

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 44.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.11.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 033c3fd95d55012dd1148b201b72ae854d5086d25e7c316ec9850de4fe776929
MD5 860afed0364ae3275ddd96ec8b7c0a4b
BLAKE2b-256 3a983041681b3a0fef0f59033861a05d846aa1d284b07b531ce35b1b97cc2e93

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7abda0e62ef00cde826d441485e2e32fe737bdddee3324e35c0e01dee65e2a88
MD5 84efe7d92207e2bbd659f1b508de95a2
BLAKE2b-256 af90ca8803505c2df3aa641e715bdb829e7fec239e967ed808436a80295d3ec0

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e1a8a4657673bfae1e05e1e1d6e94b0cabe5ed0c7c144c8aa7b7dbb774ce5c1
MD5 8c5c0a84ab318a916fc0695902e64a1b
BLAKE2b-256 18447e8d208eb59a8224fcc474415104f13be9b378be8da63f76dfde12ec2b44

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e04aa19acc324a1a076abb4035dabe9b64badb19f76ad9c798bde39d41025cdc
MD5 ee99c50f95ce57cb08ea701f5fa9e0b2
BLAKE2b-256 9a1db625246bb88b78244d7fa2f3ae1afc60a45590134fa292ed7cb8c028596e

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9885e3e4f13b2bd44aaf2a1a6390a11add9f48d5295f7a592393ceb8991577a3
MD5 989c613e807e1ec39b9ce7aced5b7f6d
BLAKE2b-256 62354297fb91ee65883caa6c228eb8ae27db0a41353819902694c61d3bd22de1

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 370f569c57e1d888304052c18e58f4a927338eafdaef78613c685ca2ea0d1fa0
MD5 df92549e1d2832c0685d851303685301
BLAKE2b-256 6dbc6f79da3a8edf5f432ccdc49fd35e8b4fe2ce1d4ad3b5360c742101a57838

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 44.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.11.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4b4bb134c7aa457e26cc6ea482b016fef45db71417d55cc6d8f43d799cdf9ef2
MD5 21f7168cfd1c85df41b4f4e192c84ca6
BLAKE2b-256 238657a03f715b1398c6c5efa5e62e34d683b6c4b609b0e51df58d48aedde84a

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 15f237e890c24aef6891c7d008f9ff7e758c6ef39a2b5df264650eb7900403c0
MD5 1325fc11a69f1f8955b6a3dc455c509b
BLAKE2b-256 346031ab759c4305d0cd4aac316c7c580d955800980eb97c2c1e67502b2daed9

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c77da50c9a91e23beb63c2a711ef9e9ca9a2060442757dffee34ea41847d8156
MD5 c0d7ea4212f34224984a55f95154af39
BLAKE2b-256 888c9d1f74196c296046af1f20e6d3fc7fbb27387282315e1643f450bba14329

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ea7f579182d83d00fed0e5c11a4aa5ffe01460444219dedc448a36adf0c3917
MD5 e917d5ac9167cb4da4a864c44ff72d61
BLAKE2b-256 c45225baeb7d1f10fb402dc8313a0b38b1469dc0e4b73c9e1fa570a64a8bc59a

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5305792c7110e32ff155aed0df46aa60a60fc6e52cd4ee02cdeb67eaccd5356e
MD5 21a4e09de491b366e9f884bbaf773c73
BLAKE2b-256 6fd9d10111b008fabab4aea0f98274d3f5db4bd33baadf30c782b6e659ec7708

See more details on using hashes here.

File details

Details for the file scipy-1.11.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a63d1ec9cadecce838467ce0631c17c15c7197ae61e49429434ba01d618caa83
MD5 73cde92a345dfa9a71389e1e786e455e
BLAKE2b-256 3a8567af0d598ed6e60a105e7acbf6bb1be1eab8c2f22facd2ffec84ba9a431a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page