Skip to main content

Statistical computations and models for Python

Project description

Statsmodels logo

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Getting the latest code

Installing the most recent nightly wheel

The most recent nightly wheel can be installed using pip.

python -m pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.14.5.tar.gz (20.5 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.14.5-cp313-cp313-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.13Windows x86-64

statsmodels-0.14.5-cp313-cp313-musllinux_1_2_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

statsmodels-0.14.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.5-cp313-cp313-macosx_11_0_arm64.whl (9.7 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

statsmodels-0.14.5-cp313-cp313-macosx_10_13_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

statsmodels-0.14.5-cp312-cp312-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.12Windows x86-64

statsmodels-0.14.5-cp312-cp312-musllinux_1_2_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

statsmodels-0.14.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.5-cp312-cp312-macosx_11_0_arm64.whl (9.7 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

statsmodels-0.14.5-cp312-cp312-macosx_10_13_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

statsmodels-0.14.5-cp311-cp311-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.11Windows x86-64

statsmodels-0.14.5-cp311-cp311-musllinux_1_2_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

statsmodels-0.14.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.5-cp311-cp311-macosx_11_0_arm64.whl (9.7 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

statsmodels-0.14.5-cp311-cp311-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

statsmodels-0.14.5-cp310-cp310-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.10Windows x86-64

statsmodels-0.14.5-cp310-cp310-musllinux_1_2_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

statsmodels-0.14.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.5-cp310-cp310-macosx_11_0_arm64.whl (9.7 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

statsmodels-0.14.5-cp310-cp310-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

statsmodels-0.14.5-cp39-cp39-win_amd64.whl (9.7 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.14.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.5-cp39-cp39-macosx_11_0_arm64.whl (9.8 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

statsmodels-0.14.5-cp39-cp39-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.14.5.tar.gz.

File metadata

  • Download URL: statsmodels-0.14.5.tar.gz
  • Upload date:
  • Size: 20.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.11

File hashes

Hashes for statsmodels-0.14.5.tar.gz
Algorithm Hash digest
SHA256 de260e58cccfd2ceddf835b55a357233d6ca853a1aa4f90f7553a52cc71c6ddf
MD5 838305f49994c5244dd3acd6f83cac50
BLAKE2b-256 64cc8c1bf59bf8203dea1bf2ea811cfe667d7bcc6909c83d8afb02b08e30f50b

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2a06bca03b7a492f88c8106103ab75f1a5ced25de90103a89f3a287518017939
MD5 835e6ef0b7a968ee2985bc27f1384ba6
BLAKE2b-256 44d680df1bbbfcdc50bff4152f43274420fa9856d56e234d160d6206eb1f5827

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9f866b2ebb2904b47c342d00def83c526ef2eb1df6a9a3c94ba5fe63d0005aec
MD5 b7b671aea49dc243792042dfbfec6bdb
BLAKE2b-256 c7d618903fb707afd31cf1edaec5201964dbdacb2bfae9a22558274647a7c88f

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5a085d47c8ef5387279a991633883d0e700de2b0acc812d7032d165888627bef
MD5 a321e14a5fd164f01ed0ae02825ebd7a
BLAKE2b-256 1e48973da1ee8bc0743519759e74c3615b39acdc3faf00e0a0710f8c856d8c9d

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9dc4ee159070557c9a6c000625d85f653de437772fe7086857cff68f501afe45
MD5 043c5527bf02152def80581292e60893
BLAKE2b-256 90cea55a6f37b5277683ceccd965a5828b24672bbc427db6b3969ae0b0fc29fb

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9118f76344f77cffbb3a9cbcff8682b325be5eed54a4b3253e09da77a74263d3
MD5 c4a1e78782f26813198a356f49dfc603
BLAKE2b-256 5a36bf3d7f0e36acd3ba9ec0babd79ace25506b6872780cbd710fb7cd31f0fa2

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 906263134dd1a640e55ecb01fda4a9be7b9e08558dba9e4c4943a486fdb0c9c8
MD5 ada728919134562dcea7fe8bdffbd202
BLAKE2b-256 84fd4c374108cf108b3130240a5b45847a61f70ddf973429044a81a05189b046

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b2ed065bfbaf8bb214c7201656df840457c2c8c65e1689e3eb09dc7440f9c61c
MD5 94b26c61fea478351f411a58f53e5142
BLAKE2b-256 df4c2feda3a9f0e17444a84ba5398ada6a4d2e1b8f832760048f04e2b8ea0c41

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6264fb00e02f858b86bd01ef2dc05055a71d4a0cc7551b9976b07b0f0e6cf24f
MD5 408a72f230b77a2044b34722e568c935
BLAKE2b-256 164f2d5a8d14bebdf2b03b3ea89b8c6a2c837bb406ba5b7a41add8bd303bce29

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c3dd760a6fa80cd5e0371685c697bb9c2c0e6e1f394d975e596a1e6d0bbb9372
MD5 b5d1cd217182bbb9a010bdf758893b89
BLAKE2b-256 66dedc6bf2f6e8c8eb4c5815560ebdbdf2d69a767bc0f65fde34bc086cf5b36d

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 86224f6e36f38486e471e75759d241fe2912d8bc25ab157d54ee074c6aedbf45
MD5 7df062f9a31a6de36eebb4283694e436
BLAKE2b-256 4a934ddc3bc4a59c51e6a57c49df1b889882c40d9e141e855b3517f6a8de3232

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4263d7f4d0f1d5ac6eb4db22e1ee34264a14d634b9332c975c9d9109b6b46e12
MD5 28a8a48df724537252b693ade963fae2
BLAKE2b-256 1c6fdb0cf5efa48277ac6218d9b981c8fd5e63c4c43e0d9d65015fdc38eed0ef

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 37e7364a39f9aa3b51d15a208c2868b90aadb8412f868530f5cba9197cb00eaa
MD5 90671e2ab58c66b81a8b1ef951e085a1
BLAKE2b-256 5fa5fcc4f5f16355660ce7a1742e28a43e3a9391b492fc4ff29fdd6893e81c05

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ec56f771d9529cdc17ed2fb2a950d100b6e83a7c5372aae8ac5bb065c474b856
MD5 258478c94e0c4a1d6b3a3906d98275d5
BLAKE2b-256 05ac4276459ea71aa46e2967ea283fc88ee5631c11f29a06787e16cf4aece1b8

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 26c028832730aebfbfd4e7501694e1f9ad31ec8536e776716673f4e7afd4059a
MD5 f5cedcb40dc97963dd92443e0bf00a7e
BLAKE2b-256 f0c8ae82feb00582f4814fac5d2cb3ec32f93866b413cf5878b2fe93688ec63c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f402fc793458dd6d96e099acb44cd1de1428565bf7ef3030878a8daff091f08a
MD5 4563a2bd56892c94088d1ffac7ef0bb5
BLAKE2b-256 6749ac803ca093ec3845184a752a91cd84511245e1f97103b15cfe32794a3bb0

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f2ad5aee04ae7196c429df2174df232c057e478c5fa63193d01c8ec9aae04d31
MD5 f9f7c1185b66500482938e7a1c250866
BLAKE2b-256 ceda6ebb64d0db4e86c0d2d9cde89e03247702da0ab191789f7813d4f9a348da

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 128872be8f3208f4446d91ea9e4261823902fc7997fee7e1a983eb62fd3b7c6e
MD5 c73275f74d48de2d912f1968eed5d9fb
BLAKE2b-256 cac12654541ff6f5790d01d1e5ba36405fde873f4a854f473e90b4fe56b37333

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b7091a8442076c708c926de3603653a160955e80a2b6d931475b7bb8ddc02e5
MD5 1b16bb30899fcbb0935273c93035ac63
BLAKE2b-256 1430fd49902b30416b828de763e161c0d6e2cc04d119ae4fbdd3f3b43dc8f1be

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1cab9e6fce97caf4239cdb2df375806937da5d0b7ba2699b13af33a07f438464
MD5 6c16b2f1cffb1a813d552cf4c4b996d4
BLAKE2b-256 d16f6de51f1077b7cef34611f1d6721392ea170153251b4d977efcf6d100f779

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1e9742d8a5ac38a3bfc4b7f4b0681903920f20cbbf466d72b1fd642033846108
MD5 555e1ec82a07e6f23d1a7c27c01df017
BLAKE2b-256 64228b1e38310272e766abd6093607000a81827420a3348f09eff08a9e54cbaf

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d7c14fb2617bb819fb2532e1424e1da2b98a3419a80e95f33365a72d437d474e
MD5 e2e2b062de5af7af38442617fda2ec3c
BLAKE2b-256 a125edf20acbd670934b02cd9344e29c9a03ce040122324b3491bb075ae76b2d

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 145bc39b2cb201efb6c83cc3f2163c269e63b0d4809801853dec6f440bd3bc37
MD5 305db6bf791cba7b3c89362b278b057f
BLAKE2b-256 dfa8803c280419a7312e2472969fe72cf461c1210a27770a662cbe3b5cd7c6fe

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8d96b0bbaeabd3a557c35cc7249baa9cfbc6dd305c32a9f2cbdd7f46c037e7f
MD5 fcf20f1ef2b9bf97e729ae1dc9c50427
BLAKE2b-256 66d96967475805de06691e951072d05e40e3f1c71b6221bb92401193ee19bd2a

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9fc2b5cdc0c95cba894849651fec1fa1511d365e3eb72b0cc75caac44077cd48
MD5 0ab3c3f2d2656dff38f6499ee0f2d92d
BLAKE2b-256 3a2c55b2a5d10c1a211ecab3f792021d2581bbe1c5ca0a1059f6715dddc6899d

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.14.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.11

File hashes

Hashes for statsmodels-0.14.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 afb37ca1d70d99b5fd876e8574ea46372298ae0f0a8b17e4cf0a9afd2373ae62
MD5 e4898aa25909d465d78d5a28efd0e4fb
BLAKE2b-256 fe7d3608f14237daccc0f3116b006ee3a42ca0e4dbe296496950624934138171

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 56da20def5350d676388213a330fd40ed15d0e8dd0bb1b92c0e4b0f2a65d3ad2
MD5 e61d2414a8216ceeab3c61fc46363761
BLAKE2b-256 2b5808e21dda0d52e4119b0e1eab8e865ce3e9c6bf59f0f879a9448deb827e83

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4a060c7e0841c549c8ce2825fd6687e6757e305d9c11c9a73f6c5a0ce849bb69
MD5 a194e67579018a936fc965295873536d
BLAKE2b-256 720a0ab3a900fc3245ebdaaca59018567b1e23bcab13c9eea2d7b3d8ffcbb82e

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e5e26b21d2920905764fb0860957d08b5ba2fae4466ef41b1f7c53ecf9fc7fa
MD5 65105f5b9fa662a55cad55722e5ba819
BLAKE2b-256 44ec091dc1e69bbc84139e3409e45ac26e285ef41eb67116d13e094cdde7804d

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b23b8f646dd78ef5e8d775d879208f8dc0a73418b41c16acac37361ff9ab7738
MD5 5eb4cf3cba5b04fdf005f5c0961da2b8
BLAKE2b-256 392d3ab5a8e736b94a91434a70dcbdc4363775711ef17c733e6bde5f24cb2f62

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page