Skip to main content

Statistical computations and models for Python

Project description

Statsmodels logo

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Getting the latest code

Installing the most recent nightly wheel

The most recent nightly wheel can be installed using pip.

python -m pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.14.6.tar.gz (20.7 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

statsmodels-0.14.6-cp314-cp314-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.14Windows x86-64

statsmodels-0.14.6-cp314-cp314-musllinux_1_2_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

statsmodels-0.14.6-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.6-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.6-cp314-cp314-macosx_11_0_arm64.whl (10.0 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

statsmodels-0.14.6-cp314-cp314-macosx_10_15_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

statsmodels-0.14.6-cp313-cp313-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.13Windows x86-64

statsmodels-0.14.6-cp313-cp313-musllinux_1_2_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

statsmodels-0.14.6-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.6-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.6-cp313-cp313-macosx_11_0_arm64.whl (10.0 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

statsmodels-0.14.6-cp313-cp313-macosx_10_13_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

statsmodels-0.14.6-cp312-cp312-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.12Windows x86-64

statsmodels-0.14.6-cp312-cp312-musllinux_1_2_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

statsmodels-0.14.6-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.6-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.6-cp312-cp312-macosx_11_0_arm64.whl (10.0 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

statsmodels-0.14.6-cp312-cp312-macosx_10_13_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

statsmodels-0.14.6-cp311-cp311-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.11Windows x86-64

statsmodels-0.14.6-cp311-cp311-musllinux_1_2_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

statsmodels-0.14.6-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.6-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.6-cp311-cp311-macosx_11_0_arm64.whl (10.0 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

statsmodels-0.14.6-cp311-cp311-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

statsmodels-0.14.6-cp310-cp310-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.10Windows x86-64

statsmodels-0.14.6-cp310-cp310-musllinux_1_2_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

statsmodels-0.14.6-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.6-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.6-cp310-cp310-macosx_11_0_arm64.whl (10.0 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

statsmodels-0.14.6-cp310-cp310-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

statsmodels-0.14.6-cp39-cp39-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.14.6-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

statsmodels-0.14.6-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

statsmodels-0.14.6-cp39-cp39-macosx_11_0_arm64.whl (10.0 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

statsmodels-0.14.6-cp39-cp39-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.14.6.tar.gz.

File metadata

  • Download URL: statsmodels-0.14.6.tar.gz
  • Upload date:
  • Size: 20.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.9

File hashes

Hashes for statsmodels-0.14.6.tar.gz
Algorithm Hash digest
SHA256 4d17873d3e607d398b85126cd4ed7aad89e4e9d89fc744cdab1af3189a996c2a
MD5 c3ca6e72f6a708196e5327c669906a31
BLAKE2b-256 0d81e8d74b34f85285f7335d30c5e3c2d7c0346997af9f3debf9a0a9a63de184

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 151b73e29f01fe619dbce7f66d61a356e9d1fe5e906529b78807df9189c37721
MD5 e03eceef94ba41c31ae2ad70ded3c09f
BLAKE2b-256 2633f1652d0c59fa51de18492ee2345b65372550501ad061daa38f950be390b6

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a518d3f9889ef920116f9fa56d0338069e110f823926356946dae83bc9e33e19
MD5 c35da51255bd774f520632dedc403c8a
BLAKE2b-256 0f364d44f7035ab3c0b2b6a4c4ebb98dedf36246ccbc1b3e2f51ebcd7ac83abb

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3414e40c073d725007a6603a18247ab7af3467e1af4a5e5a24e4c27bc26673b4
MD5 c9d2f3379e5c34bea105aea6a99caf7a
BLAKE2b-256 340e2408735aca9e764643196212f9069912100151414dd617d39ffc72d77eee

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e443e7077a6e2d3faeea72f5a92c9f12c63722686eb80bb40a0f04e4a7e267ad
MD5 bb9c375ed2703d5ef909b52a810b2594
BLAKE2b-256 c198b0dfb4f542b2033a3341aa5f1bdd97024230a4ad3670c5b0839d54e3dcab

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 73f305fbf31607b35ce919fae636ab8b80d175328ed38fdc6f354e813b86ee37
MD5 5ffd12bb6f7b50569242dd0612dd02e6
BLAKE2b-256 abf063c1bfda75dc53cee858006e1f46bd6d6f883853bea1b97949d0087766ca

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 00781869991f8f02ad3610da6627fd26ebe262210287beb59761982a8fa88cae
MD5 749fff403eb6b97e80d3bb414b800c7c
BLAKE2b-256 71de09540e870318e0c7b58316561d417be45eff731263b4234fdd2eee3511a8

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 8021271a79f35b842c02a1794465a651a9d06ec2080f76ebc3b7adce77d08233
MD5 25b7959893976e8e8d5e02098e2c8b91
BLAKE2b-256 9808b79f0c614f38e566eebbdcff90c0bcacf3c6ba7a5bbb12183c09c29ca400

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f1c08befa85e93acc992b72a390ddb7bd876190f1360e61d10cf43833463bc9c
MD5 2e68c57cfeabe13fe75c900ea8c0ae9b
BLAKE2b-256 ee0fa6900e220abd2c69cd0a07e3ad26c71984be6061415a60e0f17b152ecf08

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 730f3297b26749b216a06e4327fe0be59b8d05f7d594fb6caff4287b69654589
MD5 672fd325211af6f15fbe51ccded9394b
BLAKE2b-256 10b9fd41f1f6af13a1a1212a06bb377b17762feaa6d656947bf666f76300fc05

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 89ee7d595f5939cc20bf946faedcb5137d975f03ae080f300ebb4398f16a5bd4
MD5 4d4ddad73062e6fd46cccd98c05f5096
BLAKE2b-256 ee770ec96803eba444efd75dba32f2ef88765ae3e8f567d276805391ec2c98c6

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa60d82e29fcd0a736e86feb63a11d2380322d77a9369a54be8b0965a3985f71
MD5 2cfff01583344feec93287435a065085
BLAKE2b-256 53ddd8cfa7922fc6dc3c56fa6c59b348ea7de829a94cd73208c6f8202dd33f17

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 47ee7af083623d2091954fa71c7549b8443168f41b7c5dce66510274c50fd73e
MD5 b35ce07e4e97dad593edecf1aef1be2a
BLAKE2b-256 8159a5aad5b0cc266f5be013db8cde563ac5d2a025e7efc0c328d83b50c72992

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b5eb07acd115aa6208b4058211138393a7e6c2cf12b6f213ede10f658f6a714f
MD5 859f97faacfbec579ccf2a9495167963
BLAKE2b-256 60153daba2df40be8b8a9a027d7f54c8dedf24f0d81b96e54b52293f5f7e3418

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 81e7dcc5e9587f2567e52deaff5220b175bf2f648951549eae5fc9383b62bc37
MD5 d241b99ea1233fe3401c15aabe2ae7db
BLAKE2b-256 564adce451c74c4050535fac1ec0c14b80706d8fc134c9da22db3c8a0ec62c33

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 19b58cf7474aa9e7e3b0771a66537148b2df9b5884fbf156096c0e6c1ff0469d
MD5 2fd8ecdf8bd9b66a4804354a044d96af
BLAKE2b-256 8168dddd76117df2ef14c943c6bbb6618be5c9401280046f4ddfc9fb4596a1b8

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d8c00a42863e4f4733ac9d078bbfad816249c01451740e6f5053ecc7db6d6368
MD5 ea0440fc7b0feecb85b057d92c5cd8e9
BLAKE2b-256 48f53a73b51e6450c31652c53a8e12e24eac64e3824be816c0c2316e7dbdcb7d

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 26d4f0ed3b31f3c86f83a92f5c1f5cbe63fc992cd8915daf28ca49be14463a1c
MD5 c8a875da34b7fe5453b7627312907a6c
BLAKE2b-256 0530affbabf3c27fb501ec7b5808230c619d4d1a4525c07301074eb4bda92fa9

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fe76140ae7adc5ff0e60a3f0d56f4fffef484efa803c3efebf2fcd734d72ecb5
MD5 14080f8e75830067e9c069497e480f06
BLAKE2b-256 25ce308e5e5da57515dd7cab3ec37ea2d5b8ff50bef1fcc8e6d31456f9fae08e

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2738a00fca51196f5a7d44b06970ace6b8b30289839e4808d656f8a98e35faa7
MD5 9a71457e128a1fee01c31e6fc77407c0
BLAKE2b-256 bfcc018f14ecb58c6cb89de9d52695740b7d1f5a982aa9ea312483ea3c3d5f77

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9e8d2e519852adb1b420e018f5ac6e6684b2b877478adf7fda2cfdb58f5acb5d
MD5 855b4d79aa68a5a4342b5adb0449e2c1
BLAKE2b-256 288ccf3d30c8c2da78e2ad1f50ade8b7fabec3ff4cdfc56fbc02e097c4577f90

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a3764ba8195c9baf0925a96da0743ff218067a269f01d155ca3558deed2658ca
MD5 238645d4a251a6de13b2daa2b850bb02
BLAKE2b-256 40c69ae8e9b0721e9b6eb5f340c3a0ce8cd7cce4f66e03dd81f80d60f111987f

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bdf1dfe2a3ca56f5529118baf33a13efed2783c528f4a36409b46bbd2d9d48eb
MD5 a47429f079d9bab0e0b017a53e1d5238
BLAKE2b-256 a92cc8f7aa24cd729970728f3f98822fb45149adc216f445a9301e441f7ac760

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 341fa68a7403e10a95c7b6e41134b0da3a7b835ecff1eb266294408535a06eb6
MD5 b057b3e24111b016491ecf3df45f2957
BLAKE2b-256 82afec48daa7f861f993b91a0dcc791d66e1cf56510a235c5cbd2ab991a31d5c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6ad5c2810fc6c684254a7792bf1cbaf1606cdee2a253f8bd259c43135d87cfb4
MD5 eddd275e1ec4b112012e48ffbf8d3bb6
BLAKE2b-256 a94ddf4dd089b406accfc3bb5ee53ba29bb3bdf5ae61643f86f8f604baa57656

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e83a9abe653835da3b37fb6ae04b45480c1de11b3134bd40b09717192a1456ea
MD5 4494fa13ac162065710ab6e2034fe9ea
BLAKE2b-256 9a1c2e10b7c7cc44fa418272996bf0427b8016718fd62f995d9c1f7ab37adf35

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0444e88557df735eda7db330806fe09d51c9f888bb1f5906cb3a61fb1a3ed4a8
MD5 59d792842c1d77210f30ab7ea47b7b1a
BLAKE2b-256 f9bedaf0dba729ccdc4176605f4a0fd5cfe71cdda671749dca10e74a732b8b1c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 06eec42d682fdb09fe5d70a05930857efb141754ec5a5056a03304c1b5e32fd9
MD5 538d15690ddc5fdd152fa8014b9c43e0
BLAKE2b-256 9455b86c861c32186403fe121d9ab27bc16d05839b170d92a978beb33abb995e

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e93bd5d220f3cb6fc5fc1bffd5b094966cab8ee99f6c57c02e95710513d6ac3f
MD5 7e29e4ac9cf38c47cd9a35d15f8569fe
BLAKE2b-256 b0775fc4cbc2d608f9b483b0675f82704a8bcd672962c379fe4d82100d388dbf

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 109012088b3e370080846ab053c76d125268631410142daad2f8c10770e8e8d9
MD5 b1809e9fc18fc9d98ea20426e93f6c84
BLAKE2b-256 868f338c5568315ec5bf3ac7cd4b71e34b98cb3b0f834919c0c04a0762f878a1

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f4ff0649a2df674c7ffb6fa1a06bffdb82a6adf09a48e90e000a15a6aaa734b0
MD5 94442160ec3b2359f02a672d2f752896
BLAKE2b-256 b56d9ec309a175956f88eb8420ac564297f37cf9b1f73f89db74da861052dc29

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3bef39f8587754f2d644b2e831e102fa08ace9a5a1af4b583b122e6fd3e083ab
MD5 729373cdb787fefdeccb2855e8ad0870
BLAKE2b-256 3b9da3d33f4bda4e6a5f9b1118e81f93d5bc1620ad8d685df15d79b291ad9b7f

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b328eafa86a2a67303fdb1d25677d15b70cd2a5229aabec7670ec5ea840f1375
MD5 895e1a5f1cb54cedaa1192715819ec2c
BLAKE2b-256 404dadf7615db9cc7802608b6343789e66ff6e8220f1a84066e502fe51e4f90f

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0f52ef0f0b63b8fd11e1ef1c2a1e73a410720b8715c9a83a26d733b6815597fe
MD5 bc9b862afc7cc6dbbb3a03a839687f83
BLAKE2b-256 62373b609324f22c151267784c5830d3afef2cc7b22970d6cf957f1b799fca3b

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e0fc891d6358bf376cc0ae1fee10a650478172ae9ba359daba1785fc496cd1a
MD5 c4735a92db5da8f031f1959b97a0b1b6
BLAKE2b-256 0bd99bcd801ae2881884848bd53b5dc985e8d2a1b20cb1a0350f2a4b4dbfce24

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4d0c1b0f9f6915619e2a0d3853e5763d4d66876892ad352e7d7b93a737556978
MD5 5abd8afffe66766178310e07357a3906
BLAKE2b-256 b6c1f3012162d55b43291267d15275433b208f63d2e91a4f82ad724679336d17

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page