Skip to main content

Statistical computations and models for use with SciPy

Project description

What Statsmodels is

Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Main Features

  • linear regression models: Generalized least squares (including weighted least squares and least squares with autoregressive errors), ordinary least squares.

  • glm: Generalized linear models with support for all of the one-parameter exponential family distributions.

  • discrete: regression with discrete dependent variables, including Logit, Probit, MNLogit, Poisson, based on maximum likelihood estimators

  • rlm: Robust linear models with support for several M-estimators.

  • tsa: models for time series analysis - univariate time series analysis: AR, ARIMA - vector autoregressive models, VAR and structural VAR - descriptive statistics and process models for time series analysis

  • nonparametric : (Univariate) kernel density estimators

  • datasets: Datasets to be distributed and used for examples and in testing.

  • stats: a wide range of statistical tests - diagnostics and specification tests - goodness-of-fit and normality tests - functions for multiple testing - various additional statistical tests

  • iolib - Tools for reading Stata .dta files into numpy arrays. - printing table output to ascii, latex, and html

  • miscellaneous models

  • sandbox: statsmodels contains a sandbox folder with code in various stages of developement and testing which is not considered “production ready”. This covers among others Mixed (repeated measures) Models, GARCH models, general method of moments (GMM) estimators, kernel regression, various extensions to scipy.stats.distributions, panel data models, generalized additive models and information theoretic measures.

Where to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

http://pypi.python.org/pypi/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Development snapshots are also avaiable in Anaconda

conda install -c https://conda.binstar.org/statsmodels statsmodels

Installation from sources

See INSTALL.txt for requirements or see the documentation

http://statsmodels.sf.net/devel/install.html

License

Modified BSD (3-clause)

Documentation

The official documentation is hosted on SourceForge

http://statsmodels.sf.net/

Windows Help

The source distribution for Windows includes a htmlhelp file (statsmodels.chm). This can be opened from the python interpreter

>>> import statsmodels.api as sm
>>> sm.open_help()

Discussion and Development

Discussions take place on our mailing list.

http://groups.google.com/group/pystatsmodels

We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

statsmodels-0.6.1.zip (7.4 MB view details)

Uploaded Source

statsmodels-0.6.1.tar.gz (7.0 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.6.1.win-amd64-py3.4.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.1.win-amd64-py3.3.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.1.win-amd64-py2.7.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.1.win-amd64-py2.6.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.1.win32-py3.4.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.1.win32-py3.3.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.1.win32-py2.7.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.1.win32-py2.6.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.6.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.3mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.6.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.0 MB view details)

Uploaded CPython 2.7macOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.6.1.zip.

File metadata

  • Download URL: statsmodels-0.6.1.zip
  • Upload date:
  • Size: 7.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for statsmodels-0.6.1.zip
Algorithm Hash digest
SHA256 4313dd4cbf1ebadef3661f6efd895132b615016e9bee560b5fdfd80c74dd422f
MD5 0dd8f77c3cca6fd12e8269398737485c
BLAKE2b-256 e0d2c8ce4a29332e75c666385034b04b3f061e4c0dabe29b9060b5c411134ff7

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1.tar.gz.

File metadata

  • Download URL: statsmodels-0.6.1.tar.gz
  • Upload date:
  • Size: 7.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for statsmodels-0.6.1.tar.gz
Algorithm Hash digest
SHA256 be4e44374aec9e848b73e5a230dee190ac0c4519e1d40f69a5813190b13ec676
MD5 f7580ebf7d2a2c9b87abfad190dcb9a3
BLAKE2b-256 201a0ca0de04152d1647cdcfdbf7de87298f3c6275edfb74ee1cc0b55eedc737

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.1.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 1431abf9b7483b9975d2a56c6fef21e860473eb1788f775505af62fe53278ae6
MD5 508fa33877cbb9fec5256e2bcff159cb
BLAKE2b-256 677742a1b842ad3ae966ef248e7fc3fe33e1d3bc19a984885c7a7a2e5263da0c

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1.win-amd64-py3.3.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.1.win-amd64-py3.3.exe
Algorithm Hash digest
SHA256 6bde27309d996cfa5d258b2b956cb2cf8fc217bcd3237330eafdb960ad2d7c3a
MD5 e7c657da6a6a2f7093a4ef3db3eb9ae8
BLAKE2b-256 31705ed35c485d270f7fc68a6283cbef3b85ceae3a6a002c00dcd01c395920d6

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.1.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 4e54bc5c906d7d6a3331a6deea4f8ae58fd84c5e6008941a8d9d539036d1bb30
MD5 5e13d4f4bdc72553f44fb8f4f3aefce8
BLAKE2b-256 21561d54ce48d0c1c9795ce7368977eafa7bcaffb9ad55f0fc00c620108850bf

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1.win-amd64-py2.6.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.1.win-amd64-py2.6.exe
Algorithm Hash digest
SHA256 7b8ba0fac122a4f307944b029523db2bab50edccf0420ccdd22f999fc9804f41
MD5 cf85068596d6dd1f9bff0ab22252bbb5
BLAKE2b-256 8d53f8f5a6fa7dead785ee8339ebca1738c0ef02c2b05bfea2474a9a882cc508

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1.win32-py3.4.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.1.win32-py3.4.exe
Algorithm Hash digest
SHA256 937dec6bd8a4ff06808c4207017136e163bbc3855def4a6a4803c2ed50817694
MD5 b210238c378172170e601fb6d2b36258
BLAKE2b-256 26747bb6d00c528f59876491664d3287c8a2d91d6a21b093bf0b5505425842d5

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1.win32-py3.3.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.1.win32-py3.3.exe
Algorithm Hash digest
SHA256 788974029d8e811219cda2eadf8706850d0df498999602b61742b3cc38ca1a91
MD5 6df7c9633d5fd5a57c0e9fb569a7db6e
BLAKE2b-256 4295b17eb3cd35c7e22170f009d5ec6816dc05e3fbb25047afc5230466bcdc06

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1.win32-py2.7.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.1.win32-py2.7.exe
Algorithm Hash digest
SHA256 633b279ef494eb7a4134362dc1878c42fffac1ad0029613e3d83b9b87affd413
MD5 9ca5ce1580da6e4e3192727fab3a2354
BLAKE2b-256 329d8bd86b5a4f8e29d403b80352f955f2da10a03837b7015336c8e1625edf22

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1.win32-py2.6.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.1.win32-py2.6.exe
Algorithm Hash digest
SHA256 7f87d9613e7dfbbb997102958caa0878ba69dfe413f8156cb197672d302a847e
MD5 922196325c3516ab6457ca74e70d3742
BLAKE2b-256 3ffa1fbb87fbd4e859d15f7fc50aa17d16fbf653b70026fb7d364bdaa06c3152

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.6.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8288ee0e5bf4af3041ea2ca32491cbedbea8197ac2892ce2289a578d97dcf560
MD5 a79eb1e5d81f3e395cbd1aa21fcb85e1
BLAKE2b-256 f904d5679176f1c9697712cd45c46c96f0c52047f7b4722e560306e4c7d7aeea

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.6.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 3dcb59038fc4e0236a08244728fd351b86a9a707c67c585e0aba127b4c76a521
MD5 e28d34450abb85652589975e383530a1
BLAKE2b-256 7c9f32f0a04772bd088548bcd9c3b52ea411f182c71f8b4a28bb5d3e0097eda0

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.6.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 caee9afac009817d7c69666efa097bc7529a952b8fd5a5ad050912c1833b19d1
MD5 56c661d667ca314edad42a2e0f5d6a22
BLAKE2b-256 bf2112dab443fc5f41d739a83635e6b9dafcb40531ebabd59ea29926c9e9b9f6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page