Skip to main content

Statistical computations and models for Python

Project description

Statsmodels logo

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Getting the latest code

Installing the most recent nightly wheel

The most recent nightly wheel can be installed using pip.

python -m pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.14.1.tar.gz (20.3 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.14.1-cp312-cp312-win_amd64.whl (9.8 MB view details)

Uploaded CPython 3.12Windows x86-64

statsmodels-0.14.1-cp312-cp312-musllinux_1_1_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

statsmodels-0.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

statsmodels-0.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

statsmodels-0.14.1-cp312-cp312-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

statsmodels-0.14.1-cp312-cp312-macosx_10_9_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

statsmodels-0.14.1-cp311-cp311-win_amd64.whl (9.9 MB view details)

Uploaded CPython 3.11Windows x86-64

statsmodels-0.14.1-cp311-cp311-musllinux_1_1_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

statsmodels-0.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

statsmodels-0.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

statsmodels-0.14.1-cp311-cp311-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

statsmodels-0.14.1-cp311-cp311-macosx_10_9_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

statsmodels-0.14.1-cp310-cp310-win_amd64.whl (9.8 MB view details)

Uploaded CPython 3.10Windows x86-64

statsmodels-0.14.1-cp310-cp310-musllinux_1_1_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

statsmodels-0.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

statsmodels-0.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

statsmodels-0.14.1-cp310-cp310-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

statsmodels-0.14.1-cp310-cp310-macosx_10_9_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

statsmodels-0.14.1-cp39-cp39-win_amd64.whl (10.0 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

statsmodels-0.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

statsmodels-0.14.1-cp39-cp39-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

statsmodels-0.14.1-cp39-cp39-macosx_10_9_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

statsmodels-0.14.1-cp38-cp38-win_amd64.whl (10.0 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

statsmodels-0.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

statsmodels-0.14.1-cp38-cp38-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

statsmodels-0.14.1-cp38-cp38-macosx_10_9_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.14.1.tar.gz.

File metadata

  • Download URL: statsmodels-0.14.1.tar.gz
  • Upload date:
  • Size: 20.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for statsmodels-0.14.1.tar.gz
Algorithm Hash digest
SHA256 2260efdc1ef89f39c670a0bd8151b1d0843567781bcafec6cda0534eb47a94f6
MD5 4e0f1ecd898349d9f23ee496bb6ba7ba
BLAKE2b-256 4b80c4e279a6a13468ae2f1f01af2a07ddb44f397ac4d7636af13c5b3b83dde1

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bc0351d279c4e080f0ce638a3d886d312aa29eade96042e3ba0a73771b1abdfb
MD5 8e3536a05d687783f1130802a9788d87
BLAKE2b-256 52fc4c0e654ab177558a657eaba369e5a25fbf700f95f1d122f6c083525d58c4

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c008e16096f24f0514e53907890ccac6589a16ad6c81c218f2ee6752fdada555
MD5 6514d526a9952c568e6a1f8af32acf12
BLAKE2b-256 050082b2f1a53b94b4c6f540efd9f1d8ff583d4e616908e5faf61b497b9e4814

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3420f88289c593ba2bca33619023059c476674c160733bd7d858564787c83d3
MD5 c4f93663d383bd388bb5fbda2a56f2a1
BLAKE2b-256 d221929083f9f4fa876ae3cf0d37483b52acc71c050afd4e802cbe5d7ed2f1fa

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2de2b97413913d52ad6342dece2d653e77f78620013b7705fad291d4e4266ccb
MD5 6ccab54b627fcd3ed40a30fee11de17b
BLAKE2b-256 35411000c2eb2ad62530a2c2a59a6de987bc8acb3362eb4c93a476e4a541d11c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f8c30181c084173d662aaf0531867667be2ff1bee103b84feb64f149f792dbd2
MD5 076faa2a551ca66028041e3d2d9ed6e1
BLAKE2b-256 dc5eab969ede80024d1d988ffd4f60c2026ae16b647c41f867fabaa4d4e77cb8

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f32a7cd424cf33304a54daee39d32cccf1d0265e652c920adeaeedff6d576457
MD5 d1edacab499a70303b35215dd52ce84a
BLAKE2b-256 2ee7636f44ea2e42327feaf7e82d9943a17010b6bd1d2aee1691a82f6f8df26d

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 709bfcef2dbe66f705b17e56d1021abad02243ee1a5d1efdb90f9bad8b06a329
MD5 ea7cb47a46559697a287dd47c23a6feb
BLAKE2b-256 9ab213833f94076dcc2709137fee92157ef5a0099a11ddff4f4b7cb301b35357

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b6838ac6bdb286daabb5e91af90fd4258f09d0cec9aace78cc441cb2b17df428
MD5 a1c839cbabf5c365a2bee46912220d38
BLAKE2b-256 6ae74a962975321d69c403089c175bb6735b517a31e31f5cdab8e37eedfdcea0

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0f727fe697f6406d5f677b67211abe5a55101896abdfacdb3f38410405f6ad8
MD5 32c9c401a780ba760eee29b3ea8b4dfa
BLAKE2b-256 d7e45c13fa7ac57bbee2bd0061efff851891a5d166587958d3aa5b6328f23f00

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b3abaca4b963259a2bf349c7609cfbb0ce64ad5fb3d92d6f08e21453e4890248
MD5 12aa99f890843232c3655e8fe55a2f39
BLAKE2b-256 9af4f9b83f8ffe00bc8d22ac6916ced94b1f622909c2f168bdd38d1afb7046e7

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7562cb18a90a114f39fab6f1c25b9c7b39d9cd5f433d0044b430ca9d44a8b52c
MD5 19df61bd1dca9a8abe84136224391c50
BLAKE2b-256 a1aba43022ffd46fe5083773f36285a334713023ae86bab828708d17993fbb7b

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b69a63ad6c979a6e4cde11870ffa727c76a318c225a7e509f031fbbdfb4e416a
MD5 0c1e45296860e9533cb2cb07aba7bb13
BLAKE2b-256 592167f47ce99670a0f14f45419d37544fb5b2431c2f12ba34680f5729464cbe

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0a8aae75a2e08ebd990e5fa394f8e32738b55785cb70798449a3f4207085e667
MD5 46c5605f0024a5a7c85c3c00c90c8df3
BLAKE2b-256 6dc846d355b3c2d04881ce745c667eba6b08ea2215a1ccae875c64b725c3d348

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5385e22e72159a09c099c4fb975f350a9f3afeb57c1efce273b89dcf1fe44c0f
MD5 27d4b6cc257dcf20872da5dc24283314
BLAKE2b-256 aafc742406bb8b6ee880dbe8aa0a25d9ad0718227ea7ec23e715816fd1ac450c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0564d92cb05b219b4538ed09e77d96658a924a691255e1f7dd23ee338df441b
MD5 19d8e701bfda872bf0b9c59d44c1fa1b
BLAKE2b-256 3988d8cd64c8c56131a796215ce7f80ebb73e97200e6e6de26580cd20ae56e3e

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e278fe74da5ed5e06c11a30851eda1af08ef5af6be8507c2c45d2e08f7550dde
MD5 98ce9fa82ba10a006f1c88c5dc188c24
BLAKE2b-256 f96bf056e449a4eb7f5627a1952b20c0b4926175630d500ae5a001b3ed607994

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a16975ab6ad505d837ba9aee11f92a8c5b49c4fa1ff45b60fe23780b19e5705e
MD5 4e1e8ebcc74f1d244162b46f4fb0e8ff
BLAKE2b-256 07cbd5ca5638e795d278776eab69cad55c23accb5c791f86f022d1cdf7e8439f

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 43af9c0b07c9d72f275cf14ea54a481a3f20911f0b443181be4769def258fdeb
MD5 014543616f3cca39eab58948c194fece
BLAKE2b-256 e1449e66906da663a7123172ba10de2afa02062da334431d7e0fe10cb62d8119

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.14.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for statsmodels-0.14.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bc43765710099ca6a942b5ffa1bac7668965052542ba793dd072d26c83453572
MD5 a4e2fc0111494161b5ca17b1f3e19ac4
BLAKE2b-256 71ba671589067df73eb2904f77766d4f966043fa503276dd100092c1009648c5

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eefa5bcff335440ee93e28745eab63559a20cd34eea0375c66d96b016de909b3
MD5 04a4dd27de42e6c1ddf3adcfa26f98cd
BLAKE2b-256 a970ead31bc6c1592a5237190994cc7023c7a2b79be287d0b3eb883a48019db0

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ab3a73d16c0569adbba181ebb967e5baaa74935f6d2efe86ac6fc5857449b07d
MD5 75c4b448d35eaeccefdb20b702736ec9
BLAKE2b-256 395f141474a7c6e431f9ab37436dc52a75bc07bc36eab551c6f1e1b6cf858a02

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e70a2e93d54d40b2cb6426072acbc04f35501b1ea2569f6786964adde6ca572
MD5 01fcc695976ab1c445784c40084bf1d3
BLAKE2b-256 a3c2e93a8ab96817c639eb89914185106cd8666360b993a97c1056e1d481f768

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 04293890f153ffe577e60a227bd43babd5f6c1fc50ea56a3ab1862ae85247a95
MD5 62bb2b0df0107b4b606bacd6673575dd
BLAKE2b-256 45f66e8ccfb97d8b26d7c66099579341ea129cdd3eefca526a5efd27cff93119

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.14.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for statsmodels-0.14.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4fe0a60695952b82139ae8750952786a700292f9e0551d572d7685070944487b
MD5 4aa5e4f804c626f23a628d8f372acec1
BLAKE2b-256 159362c79bb548988201078242d903de47666a08167de8e4beceb32157d75d5f

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a532dfe899f8b6632cd8caa0b089b403415618f51e840d1817a1e4b97e200c73
MD5 f2b8478a0394153a4632d2db3ae8ed8c
BLAKE2b-256 341fab80ddc1ebebe9f7bb18da1cc7ceb96f789809a3381565092c358ff71a72

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d5373d176239993c095b00d06036690a50309a4e00c2da553b65b840f956ae6
MD5 a58e6bf054b0a478e41a7ba7d23a6dee
BLAKE2b-256 a2982713fd8827bec513bf17fd6b00e2182ed6707830ae58ca915b752743f310

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 44ca8cb88fa3d3a4ffaff1fb8eb0e98bbf83fc936fcd9b9eedee258ecc76696a
MD5 aca58ab2f4a11c19988971b1e71262bb
BLAKE2b-256 b13344469755648f2e7ab353ef1666c2513a9f75cb4ecf4de63df58c8c572aa1

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf293ada63b2859d95210165ad1dfcd97bd7b994a5266d6fbeb23659d8f0bf68
MD5 8c2f4d1e20511673c010483798c1deb8
BLAKE2b-256 cc46b62084c74612a651be78121f3447cb98fa5655341f03af7be4dce4fb86bd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page