Skip to main content

Statistical computations and models for Python

Project description

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.13.1.tar.gz (18.1 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.13.1-cp310-none-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10Windows x86-64

statsmodels-0.13.1-cp310-cp310-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.10Windows x86-64

statsmodels-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

statsmodels-0.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

statsmodels-0.13.1-cp310-cp310-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

statsmodels-0.13.1-cp310-cp310-macosx_10_15_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

statsmodels-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

statsmodels-0.13.1-cp39-none-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.13.1-cp39-none-win32.whl (8.9 MB view details)

Uploaded CPython 3.9Windows x86

statsmodels-0.13.1-cp39-cp39-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.13.1-cp39-cp39-win32.whl (8.7 MB view details)

Uploaded CPython 3.9Windows x86

statsmodels-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

statsmodels-0.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

statsmodels-0.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (9.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

statsmodels-0.13.1-cp39-cp39-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

statsmodels-0.13.1-cp39-cp39-macosx_10_15_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

statsmodels-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

statsmodels-0.13.1-cp38-none-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.13.1-cp38-none-win32.whl (8.9 MB view details)

Uploaded CPython 3.8Windows x86

statsmodels-0.13.1-cp38-cp38-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.13.1-cp38-cp38-win32.whl (8.7 MB view details)

Uploaded CPython 3.8Windows x86

statsmodels-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

statsmodels-0.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

statsmodels-0.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (9.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

statsmodels-0.13.1-cp38-cp38-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

statsmodels-0.13.1-cp38-cp38-macosx_10_15_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

statsmodels-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

statsmodels-0.13.1-cp37-none-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.7Windows x86-64

statsmodels-0.13.1-cp37-none-win32.whl (8.8 MB view details)

Uploaded CPython 3.7Windows x86

statsmodels-0.13.1-cp37-cp37m-win_amd64.whl (9.0 MB view details)

Uploaded CPython 3.7mWindows x86-64

statsmodels-0.13.1-cp37-cp37m-win32.whl (8.6 MB view details)

Uploaded CPython 3.7mWindows x86

statsmodels-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

statsmodels-0.13.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

statsmodels-0.13.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (9.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

statsmodels-0.13.1-cp37-cp37m-macosx_10_15_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7mmacOS 10.15+ x86-64

statsmodels-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file statsmodels-0.13.1.tar.gz.

File metadata

  • Download URL: statsmodels-0.13.1.tar.gz
  • Upload date:
  • Size: 18.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1.tar.gz
Algorithm Hash digest
SHA256 006ec8d896d238873af8178d5475203844f2c391194ed8d42ddac37f5ff77a69
MD5 0d428bfa3eea49339ab95857a5dcd669
BLAKE2b-256 e7868c95a2f43d8d66837f52fc0a2d9b4ea491e564789ee94d28f642d9d47ebc

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp310-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 1634fad45c14f703c886fdbaf9a7c5b22514338bab5d30e17167a2bfe7ef93cd
MD5 54c11ca7c73813d20a969d0e51d75a6d
BLAKE2b-256 b0be6f4c6b0e82f7f479d1fc5afa61b752dea6cced395136e4b504bab7f92995

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d039937c4cf2cccc254db7e4d32df4696b614b9d27cf6756e3ddda2803eb3c8e
MD5 4667c00a2e5d3aba67c109a14dba5565
BLAKE2b-256 f7806cc013df13d9312458937035de8074656a1f4a696d766411413ac2f83733

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92bd818b65cf60b7440876d7428cc069efad018d5ba2b9b35497fb7e221e0ea7
MD5 5671cd120da77189e6e8af057b0d00b2
BLAKE2b-256 aae4a57825fd1a9a3291f5d732824e19535c040ef827eb55d7431838311e65c5

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8fb372e166babc7e976974814c1448891e467dbe77062914377ad5cda5dd2f8a
MD5 d83d6104aa39a25a384fa6bb87555b5e
BLAKE2b-256 b9d397ac7dfb54a8045abf7af5c83488ca3ef06f0f3afc872449ba2eb7f35194

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8483e09b5d1583fc23f029440b1e7ef2ea52227d084ffe944a5f8222aadb9e4d
MD5 b266eb9a819c2ca46e300a5470f023f1
BLAKE2b-256 29142398ab40f375a9029a928c33f26dbd3d491c20e4f1b512be0cc3bcec39ec

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0caa9f4d544c84a9e656946865dce17eb7cc32a9d3aff86bdbac7e87928341f1
MD5 56cf700bf276fb36a5f843ca15effdc1
BLAKE2b-256 74fc680527e71f13ffd7882826c78a872a3680e780ad20539b899ad24e4730fc

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dbfced7327766960226852c4849e76eec86e222692ca9af69e9bba31dadf7527
MD5 c7c121025371685d1e2fc693ba81fe57
BLAKE2b-256 63e5729b48050b7d08991a0a43c830be83b244d57fb32d4330539de40a863e45

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 939859be32cadf53617d6a24c05f3df1a5b03a5444b3ed26ae62ffa9ffe54169
MD5 3a9a9fb8441e0584f36293c612a4146f
BLAKE2b-256 da58933d01955ede627d7b677f00304304c5f32a9bcbe7a5bcea53f85c277316

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp39-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp39-none-win32.whl
  • Upload date:
  • Size: 8.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 b80b0319df7b7c09e466a19c0e643eefce773c535b08c4de9589a6b81b3df4f1
MD5 afa2e201c6526c19e223ef08a16cda2f
BLAKE2b-256 fd9811dbf209107d2ee99f444620abd5a5bf6203d4117ea43044d022708fc9ce

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 50009b170800c7ae9635dc9eed57c50a6caa5fd0055afac7fd87510eeb6a7f83
MD5 8e51418a52dfadbf3b3c2225f0dd758c
BLAKE2b-256 395b742d87474026da4d45cffe82eb3894c81d23b119d9b4872debbb9f8e6f21

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f39280920007633dba527a7f81d56230a6ffb04a79a9c364d4547fa46136d06f
MD5 c12fcc6764de32abd442cbdf376f3be3
BLAKE2b-256 03311ca2f83e92f1a2a3fe30f33b8ec7cd7526312a0295b3951923e9a9debd2b

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b702959e76036bffe49943fffb23d6a3357b0283967ed97c45f2f0ca835702cb
MD5 062cc1dddb157a50ebdbff0c54a0101e
BLAKE2b-256 877ad36eee753b5ecd8a6b46c7e42d244f55c6713ce74319aa313c4ddc87b181

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e54f837ced60857029c198f51df87062a2cd9d620d6202d7c775b1405e66b690
MD5 fbc6f1d43500015206c9cc03952b09c8
BLAKE2b-256 3a6466ff2199b561087819f3cc6d0259f982947b15c939a9ea84422acd6de01b

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b80e72f86769b5862c19ba7257dc21e2b449c99eacd267b12fd41620480402a2
MD5 009e348b07d929702450af971260741b
BLAKE2b-256 3b9946ab36474d9af7c2ed00976945a417a0de5b8b25789621775b9d7df05c15

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc972b34bed07e56d65edfc75f1dfa93ee7c0f00d1efd35b6242bed93b15547d
MD5 ea97f1f1a017b2e5504ddf7310fc745c
BLAKE2b-256 d55f9347193e0c4039e5013c61ba442e5f90d6c011599ecb7c3cb2e99f1185a8

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 12695c4a402ca136f00fae895fa1f4d58f05cbcac152b3d76edf49c64da4caca
MD5 60341b05655fdb604cbf3c76968914ef
BLAKE2b-256 99c2875692c4374151078ffbe6a3be85f2bdd44ca89412220e49a2cdf5d494f3

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 731391b28949deebb463810a213d05a344f00d739f49d4cc16873474bd28fba0
MD5 d403f979b9b36cefbf819e799cc8b408
BLAKE2b-256 b0d4e76cf0728ae48be24947eebb40767433c2f40760bd312811a8fb3d9b24a0

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 3ccb2d8d95bd3890647f4f3bdd8e7d9059878ffda9fb7c29653ff8a7aad430ea
MD5 2f31b8d65e9dad2d98035c8d3e0db73c
BLAKE2b-256 597b4b4ed3a03cc57a4e17bb8a4aef1f623d413d529fc99575541f2cf9b84823

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp38-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp38-none-win32.whl
  • Upload date:
  • Size: 8.9 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 fd106fab426969782c755e7be3734c3a6bd960a885b665f2c463bff6112a09f8
MD5 79e72add5829c00d4acfadf3e28dae07
BLAKE2b-256 f519b0b33b49d53aec83225eab75a368c57aba320561ad25451292e5c0cf2d6b

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0d5dec29a9106e4c5b2705b43b516fa02011858a79b3cd53d65704e5258beb03
MD5 645f8a005f647e3aed77db2ed514d988
BLAKE2b-256 2761eb52f7fe69d0ef7b73967fb16179c560d94a8fec9c0ae22f2d56728ca272

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7dc2bdfb9ba92e4d306d6e6a24f29006ab0e52dc500af7d3ad576ff00831d276
MD5 21fd49bddaf786420a33f31af03b6d80
BLAKE2b-256 98a0b8b891f97952629b94e0c69d13befbb841df9696fac1b3b7d6e00b0689ff

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 960e65b7ed1adbe89b8f2c5656ef99bc17dd5d56e334a074883282dce03703cd
MD5 f5e1d1f3ef0e787784c34d8cad0d2157
BLAKE2b-256 05762b2723e7540dce8c7ec30efbb79a1b14215b39908bccb1464523ce0f827d

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5667aa19384c4f2520c8e9a09aff1f6538bb4779f1b08fa8ecb9e134dafef69
MD5 17b00cb81b69840e186001908b7b6952
BLAKE2b-256 1521b42093da34a24e9faf43c68e429cda7473495ca69efcfefbe95046559268

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d6cc88f7a36681a10d5fea9d557c053eecd12a083c623f31e04208751e01954a
MD5 e66143680ff06f4293c5a48bf35a502a
BLAKE2b-256 3d11270e6c192f1a8b87dad5040dd90b78898e0c18f1572b7e34968a941397cc

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0cccdce24b00b30206ac9a17a963a51ba07d98931ae70e5b8b57ddc896527e83
MD5 2e2daebfb7682c8c8993d7006caf2daa
BLAKE2b-256 e818dbf9e5ad9695dab7fd6794351f498e37b5c259fb79eabb3b53c890e10b55

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 187c19d27764b6b06322eaa1e3443e9db703a7254df8291d642c4c630e10cc43
MD5 605e87a7a6437497cbbcb7c481110260
BLAKE2b-256 fef33d45f312d369346d4fe6213bebeb569eafc0a44b9bfe4cf4c09f992970b9

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 723fa3511814579fb837b13648d2d90282475baef186353d1a04b51a4b1ab50f
MD5 9e81a4b3483b799f2704a3ace3341dc3
BLAKE2b-256 c882720561143a5590872a06e6eddcc89780a52ea088e4357d42d69fdb0cfe22

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 07031985eb97190b8fef29c818ced065738de9043a886d11896ba40c90b64e07
MD5 0a68e0e23a75b09d97ddc44ba22de818
BLAKE2b-256 72be325c5ba7eb88101667f607797e496c78d8a098b64b1dd910cc407ffca937

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp37-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp37-none-win32.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 e2e8420c5afa623e1e3a4d38eb67c7bf2825c4ea9be40509c2f692f9c9bfaab7
MD5 9c625f2b32b8d2ced8bdac7aa81ada18
BLAKE2b-256 05acfaa9f16fca6339fef58ef8da89b529dd8c0546bc84c4e57055836a11bf40

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 9.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 dc3bc435024996d1a11233fd8dbd18ac2f52259c667ff2a2e22c3e1203f44fe5
MD5 f470d07975c93871fbe13c2ae0f113f2
BLAKE2b-256 ecfba771f3823f868063c9fa57020e6512741e0745a5658182def143d1a011e2

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b2fe07732807423a051c3d322ca7bf2f386688482a38c9a9da32539534710aad
MD5 080fa7472f421e3311951675a153eb81
BLAKE2b-256 edfc5893495dabc73e59d1866908dbccda24971f4e646543f07add826bb4bbf2

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae0a7265fb00b9d188346b938e4883b5fc0a4fa891b9baf013d9b9fada9cb4d3
MD5 3ebdc4368e98fa31facb7c14636e8b68
BLAKE2b-256 548ce2580541e08ef78b6abf7d3d3f9309117a6f6c287311d99dbba62594cd35

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b801978a2ba5c490fe20a3d56d52c4efb1219ce4d56d3dc295fa51d1edea4960
MD5 4a8ccb46a13a364f4ca2d3e5116b12ab
BLAKE2b-256 ae77209137b27a0a99248e8013c2e24d7e2448571d4f6b3909e9eb6dad65f4fb

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2c06e63be9d6ce367c548c95abec85af6ad7495d8d665549424af86cfbc63d1f
MD5 fb28d2b92551ded8b1c90b7dc24e81e1
BLAKE2b-256 13e42b7ca9508b4f4647f89392acc4ba12f1a9337b22a70905b580a50f4633b7

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2a0a154c294171c775c67cd9a8d9adb69a5bc29f2c203632b7d5f191cc7e2c81
MD5 3d0ce420c89a18ddd7eedfd3346eb048
BLAKE2b-256 c080733cf0052db3f09f57b9e4cfc2a4c898c55198ff974ae73a07483bef7cd1

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for statsmodels-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e156ea80804b2da5bade1ec8d8c87c795971c12fa9a8eaf7023d6a12a21d398
MD5 45b6203577b7c02f7bddc033548cd94b
BLAKE2b-256 770915ab6be22f43c9dc44d9bed98cfa7fb128f470a63889aa7814fb11f67c43

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page