Skip to main content

Statistical computations and models for Python

Project description

PyPI Version Conda Version License Travis Build Status Azure CI Build Status Appveyor Build Status Coveralls Coverage PyPI downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction modle, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.12.1.tar.gz (17.4 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

statsmodels-0.12.1-cp39-none-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.12.1-cp39-none-win32.whl (8.8 MB view details)

Uploaded CPython 3.9Windows x86

statsmodels-0.12.1-cp39-cp39-manylinux1_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9

statsmodels-0.12.1-cp39-cp39-manylinux1_i686.whl (9.3 MB view details)

Uploaded CPython 3.9

statsmodels-0.12.1-cp39-cp39-macosx_10_15_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

statsmodels-0.12.1-cp38-none-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.12.1-cp38-none-win32.whl (8.7 MB view details)

Uploaded CPython 3.8Windows x86

statsmodels-0.12.1-cp38-cp38-manylinux1_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.8

statsmodels-0.12.1-cp38-cp38-macosx_10_13_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8macOS 10.13+ x86-64

statsmodels-0.12.1-cp37-none-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.7Windows x86-64

statsmodels-0.12.1-cp37-none-win32.whl (8.6 MB view details)

Uploaded CPython 3.7Windows x86

statsmodels-0.12.1-cp37-cp37m-manylinux1_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m

statsmodels-0.12.1-cp37-cp37m-manylinux1_i686.whl (9.3 MB view details)

Uploaded CPython 3.7m

statsmodels-0.12.1-cp37-cp37m-macosx_10_13_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7mmacOS 10.13+ x86-64

statsmodels-0.12.1-cp36-none-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.6Windows x86-64

statsmodels-0.12.1-cp36-none-win32.whl (8.6 MB view details)

Uploaded CPython 3.6Windows x86

statsmodels-0.12.1-cp36-cp36m-manylinux1_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.6m

statsmodels-0.12.1-cp36-cp36m-manylinux1_i686.whl (9.3 MB view details)

Uploaded CPython 3.6m

statsmodels-0.12.1-cp36-cp36m-macosx_10_13_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.6mmacOS 10.13+ x86-64

File details

Details for the file statsmodels-0.12.1.tar.gz.

File metadata

  • Download URL: statsmodels-0.12.1.tar.gz
  • Upload date:
  • Size: 17.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1.tar.gz
Algorithm Hash digest
SHA256 a271b4ccec190148dccda25f0cbdcbf871f408fc1394a10a7dc1af4a62b91c8e
MD5 1724c55cc6a761c0190f307e1d92f578
BLAKE2b-256 e80f473915873d4fe51e94a31c0571def3ea258e8b9f68ff6cf2294c9d58e6ec

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 78813784f5fa612b4399c4963414799fbbb031188f1ad630a501c6b2af7e94e0
MD5 809713c6039167906adf032c7be6c7aa
BLAKE2b-256 3af22f72fb77642e442d830b546b44f8315e8530396aeb411b58f3f9734e16b2

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp39-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp39-none-win32.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 3dd59b7cd35843f4764b8a1476be20cf959d3da700327975f7cd2bf2a1b630b2
MD5 fbb324d9b849d58ce99f41d1ac5128bf
BLAKE2b-256 40b3349071da7bc68f7e41111751ce71dbd7a9a723ed4a8d365aac5c1ece4dd6

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f585c02b716c161f00e6a2d10f9f3497f57191183dbd6ae7eaa988707023b1ee
MD5 e22a6394e9f277b6cdb595ae717ea005
BLAKE2b-256 f98690078150c01e92a77595b5807ca20aeec11ac81d76cd853a4eb64afb544a

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.1-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 630b9d938b0388488c66394597500dfba877e3b53da536369393a9a840b8f2a0
MD5 89229de89cacb454129213c60366bd3a
BLAKE2b-256 01f914de9c15ffdb3c7834ae626a5ce13faaf38318d93c5d9cae045a2f158834

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 62be4dd5b4a254d59b7feb8093623ba6158080aa6758c2eb19105609da4b40fb
MD5 676ebe458fd72ec96c191e2ab5e68135
BLAKE2b-256 d83724070aabcdbe9349a2a77d2557d907e2f0fc34722413f01c935ac1fdb5e1

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 74c6c863d6f8a1f021d42f965b1b97eeea05293d3b18e3690c46eac0cf6d64d9
MD5 f815236e8b3cffb183bf16a032cc4768
BLAKE2b-256 bb3f1c8846d1fe142ce7551eb1cf0b91c3504edaffa3c85b40e6eec20c7faa9b

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp38-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp38-none-win32.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 a652d8bfb4ec430b706a69e3fcbdac1cdf930823e3f9b8468e3e179d47097bbb
MD5 9853faaa914274285e8c0ef1ab1c5f9a
BLAKE2b-256 7518b00351db07bbd1584e45bee2251852bf0fb202397c45546a5943c104da31

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 02679bf39d35a2aceb2d9f6d332b4e1cda1797157df792fe867b45f2a14d20d3
MD5 c15c81136c91c48992dec1fd70c4daff
BLAKE2b-256 03bfa485c84da9b84bd571331152f8b2f5a47aa4aae07b1d0bfec06f3af02b4b

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3582c0a497a9cda473470b4dd59ecd103739e3cfef1eb2e20d48dd1a2239f2e4
MD5 0c2b483114bb1eeee67088ac554b6c15
BLAKE2b-256 889afb4ec96ff528fa6426063b1357b4aad9af4cb7dafc53ac1d5a5762ffeb91

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 e5e426fb962f41d58a07a7d2f7daf32f83e911ff578368caddbcdd1886887ed1
MD5 4bd2f1f75e622627a73ae76195a40b72
BLAKE2b-256 6bbec1e4977be0018e1587714b4be570b321558549a69ae1cf334330aae9581f

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp37-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp37-none-win32.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 7be4c6d43f1f3a6b28614a4b18fdcf202bd305faf15f4c558e901cbe099ca9ea
MD5 1f2ec084f7bc9c4acb53f83bb9ef32d9
BLAKE2b-256 f807651dd3252b32a023c6f8242d8a470e963bc06b7dcec28b61f4ac89541c46

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 588c0f7e29403161ca952dcdad3d67970583742e9f11f66c7c5b08ac97a0408c
MD5 e73832ecbfff417decfe8aa120b7cf39
BLAKE2b-256 939767bf20df36a88ce8dd84828f83453b91177e1ff0abd8c92f2e0a47782689

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7614ef58ebb96cc0d4c45150116f5252a2f1e0bd15e809700776163e5a246b8c
MD5 eb5a5765b3b9c2bc1687ecdbc22a3fbe
BLAKE2b-256 d499226c45e33fb281986a30d142b318817b859b73dc61515c5dd92e6db9e095

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 aa964ca1d65f066b9b096c94fe298aab1441e11731ce6b154ffb5f8d4a4e9ccf
MD5 55916446b90b85a81c5e514887f133b5
BLAKE2b-256 9205720894fff3ce6a5f5ebecd44e82657ba74b7ad30d42220c752bcb9226413

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp36-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 830d59d94841332429edf735430180031ad5dc660de26728d723e347f414c59d
MD5 a4c15c85a738144c883134520200df2c
BLAKE2b-256 d2dcbfa88f4a4a524b89566de31ce99771bc043f136f3835de8c99936187bf85

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp36-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp36-none-win32.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp36-none-win32.whl
Algorithm Hash digest
SHA256 ef3a54b3594f4c49c295388de1fdd840a8c63a857a5252125aaf92a03ea1e3a6
MD5 808f811935edacb234ebe2e6fb281765
BLAKE2b-256 e9b2fae08b120f6776ba275173c301dd9f5fbdeab82e5d03662fc63f31c72f23

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 142eacd5a1bd8728358ff48101ee0e51ca3d42a93f6e5cb61fcfacf613977bcf
MD5 d76c03b9aaf70468c96c2a6ca28e49c7
BLAKE2b-256 be4c9e2435ca6645d6bafa2b51bb11f0a365b28934a2ffe9d6e339d67130926d

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 33c6cbed74f075b8816cec37e5c7853ed31dcacebfdbbc3af898b4907911544e
MD5 37af9dca22a277f4a9d488298597afb7
BLAKE2b-256 4383fbc3a4867390a5196081843fee5191e8b24113edc424a16eaf00886f022b

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.1-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.1-cp36-cp36m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.6m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for statsmodels-0.12.1-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3b482ab9759b89cc1c4777b71c1ccf272e868a7551fc6b74da300557407d8379
MD5 2dac446702beeb43e40a7ae616ab038b
BLAKE2b-256 e1f504fe97e293fa01d8e073cc1b9540c6620132dcd68dd4708aad6d3d0c94c4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page