Skip to main content

Statistical computations and models for use with SciPy

Project description

What Statsmodels is

Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Main Features

  • linear regression models: Generalized least squares (including weighted least squares and least squares with autoregressive errors), ordinary least squares.

  • glm: Generalized linear models with support for all of the one-parameter exponential family distributions.

  • discrete: regression with discrete dependent variables, including Logit, Probit, MNLogit, Poisson, based on maximum likelihood estimators

  • rlm: Robust linear models with support for several M-estimators.

  • tsa: models for time series analysis - univariate time series analysis: AR, ARIMA - vector autoregressive models, VAR and structural VAR - descriptive statistics and process models for time series analysis

  • nonparametric : (Univariate) kernel density estimators

  • datasets: Datasets to be distributed and used for examples and in testing.

  • stats: a wide range of statistical tests - diagnostics and specification tests - goodness-of-fit and normality tests - functions for multiple testing - various additional statistical tests

  • iolib - Tools for reading Stata .dta files into numpy arrays. - printing table output to ascii, latex, and html

  • miscellaneous models

  • sandbox: statsmodels contains a sandbox folder with code in various stages of developement and testing which is not considered “production ready”. This covers among others Mixed (repeated measures) Models, GARCH models, general method of moments (GMM) estimators, kernel regression, various extensions to scipy.stats.distributions, panel data models, generalized additive models and information theoretic measures.

Where to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

http://pypi.python.org/pypi/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Development snapshots are also avaiable in Anaconda

conda install -c https://conda.binstar.org/statsmodels statsmodels

Installation from sources

See INSTALL.txt for requirements or see the documentation

http://statsmodels.sf.net/devel/install.html

License

Modified BSD (3-clause)

Documentation

The official documentation is hosted on SourceForge

http://statsmodels.sf.net/

Windows Help

The source distribution for Windows includes a htmlhelp file (statsmodels.chm). This can be opened from the python interpreter

>>> import statsmodels.api as sm
>>> sm.open_help()

Discussion and Development

Discussions take place on our mailing list.

http://groups.google.com/group/pystatsmodels

We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

statsmodels-0.6.0.zip (7.3 MB view details)

Uploaded Source

statsmodels-0.6.0.tar.gz (6.9 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.6.0.win-amd64-py3.4.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.0.win-amd64-py3.3.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.0.win-amd64-py2.7.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.0.win-amd64-py2.6.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.0.win32-py3.4.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.0.win32-py3.3.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.0.win32-py2.7.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.0.win32-py2.6.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.6.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.3mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.6.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.0 MB view details)

Uploaded CPython 2.7macOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.6.0.zip.

File metadata

  • Download URL: statsmodels-0.6.0.zip
  • Upload date:
  • Size: 7.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for statsmodels-0.6.0.zip
Algorithm Hash digest
SHA256 4c51342b358ee40a3b0543e39db3f9743e002f7346e06c7d8267b3ba1008592a
MD5 24febae6fea5b24115142fcf75b6abbb
BLAKE2b-256 61d5041a63aa0fc7715a6e8972d42b4e91dc7fe83bef756818b3710c4fa065a5

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0.tar.gz.

File metadata

  • Download URL: statsmodels-0.6.0.tar.gz
  • Upload date:
  • Size: 6.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for statsmodels-0.6.0.tar.gz
Algorithm Hash digest
SHA256 266a2ded2e2fc8ce40674da313560ec1c43e7960870a2d58e4b049865eb8e79b
MD5 98dc4c1132ef2c231cd508d64b2e65c5
BLAKE2b-256 baf391db7b6fe65df01b88655cc7d32133d0bcca758563b5816b23203959671d

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 859aa07d4d98531bde880babbeaeba155b01cdf6eb78de8ffadcfcdc5fdc335a
MD5 baa31637dbcecb2d038e1bf8734c5a64
BLAKE2b-256 07f5a61644c8321baab7a07925f5c8e101ad52d5f6550a195f7b0ab8ee82da1e

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0.win-amd64-py3.3.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0.win-amd64-py3.3.exe
Algorithm Hash digest
SHA256 a1e015dd42e01ec49b53d60d00940e18e782d830cf47b32b5e9d8f0ca10a018f
MD5 9dffed8b6a384402441d680f8d874596
BLAKE2b-256 e53b6532ea8e8eaa156f84340f5744b2090423d8b03abd6a227c5d0eb2093170

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 1352c921baeaf1812977138697108b7d69d66202e55067a202c41381e51d75c2
MD5 ce6ee826c58c27be2d734a18e292cb18
BLAKE2b-256 be0a5d3f4561158461a69f4a2c9680665d779ad280f7f1ea77cf5cfacfb8f87f

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0.win-amd64-py2.6.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0.win-amd64-py2.6.exe
Algorithm Hash digest
SHA256 7bac69b842f2769379bafafb3b9b24f1a3c00510dcf20f47cf3bc56914d40b5d
MD5 8de69624218a01b5e589739bc03efa49
BLAKE2b-256 e2e64733b548d216521412f26b21fe49f91807f70391e706ecb0a27fcb6d770c

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0.win32-py3.4.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0.win32-py3.4.exe
Algorithm Hash digest
SHA256 2a82ab8787a665628a365daba3e80ea1b0e85cb0b9bac04a4052e2fd63cf3de9
MD5 6595c57706fdb5e80fa9e04fc1d39247
BLAKE2b-256 4c7ecf3b22046d2eafbab7da6644df4bb5b643e1714856879e6e4a2422e769a6

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0.win32-py3.3.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0.win32-py3.3.exe
Algorithm Hash digest
SHA256 9f86451951c864ba85d174e981bdd0a7e5355aca3d9abfd6efc92098a3cbcb83
MD5 90c703f253ed1a914642cbc8561a7282
BLAKE2b-256 ca76d1a7602ecb5212c0c7d9bb4bb8c8565801ed87c0582ae54076f707dabb3a

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0.win32-py2.7.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0.win32-py2.7.exe
Algorithm Hash digest
SHA256 37af9afe0576195eb877be237bfd50d82060d79d980e40a74a13e02c00a4f341
MD5 0dc93bdb82b84b52a22a220e118e9ce1
BLAKE2b-256 3a3f67c7f985dda29a2b73bb7702c41ab6525bce9098f06f5d2b9befa1fc5c50

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0.win32-py2.6.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0.win32-py2.6.exe
Algorithm Hash digest
SHA256 95c9e42d9e00534bb599ef7f69a4cc7591709b1f34874857dd27e6584a4d991b
MD5 de4915194caea1ed5bff45d694b8cf73
BLAKE2b-256 d3cd60e8dd1c8042dca39044db42f78e02de5221d184b857762c046accac3fb8

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.6.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4f8ed32db9c9d5f0243e332757ea241f2357edc507917c00f936cd3e9d74d58a
MD5 827865022f2825cd6d3703b559ff8d96
BLAKE2b-256 083eeb184df2223bf15b6bbd949d874cb1c62cf68627a761f7d213d31d92fd9a

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.6.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f6d2501ea11349f86707038e7c7e9ca6936632b34336ad358d19259b7e4a2197
MD5 03a9290707e5d5d67dc23af2e2846e66
BLAKE2b-256 d96e4c00f9f8034d1c2b076fb6d7c5440df7d88efa4c103e36fd711664a557b4

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.6.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 39e42a96cc30da6f4a3931c3e53659940ed1098baf0f6cd9b97b14954391fa12
MD5 84dd7630e7767f0386967888bd524242
BLAKE2b-256 62dab47137b1fa372dc6cbcd8de53abfcea379156552f0d8f058aec36b519aae

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page