Skip to main content

Statistical computations and models for Python

Project description

Travis Build Status Azure CI Build Status Appveyor Build Status Coveralls Coverage

About Statsmodels

Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction modle, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of developement and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on our mailing list.

http://groups.google.com/group/pystatsmodels

We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.10.0.tar.gz (14.0 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

statsmodels-0.10.0-cp37-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.7Windows x86-64

statsmodels-0.10.0-cp37-cp37m-win32.whl (7.3 MB view details)

Uploaded CPython 3.7mWindows x86

statsmodels-0.10.0-cp37-cp37m-manylinux1_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.7m

statsmodels-0.10.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.10.0-cp36-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.6Windows x86-64

statsmodels-0.10.0-cp36-none-win32.whl (7.1 MB view details)

Uploaded CPython 3.6Windows x86

statsmodels-0.10.0-cp36-cp36m-manylinux1_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.6m

statsmodels-0.10.0-cp36-cp36m-manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 3.6m

statsmodels-0.10.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.10.0-cp35-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.5Windows x86-64

statsmodels-0.10.0-cp35-none-win32.whl (7.1 MB view details)

Uploaded CPython 3.5Windows x86

statsmodels-0.10.0-cp35-cp35m-manylinux1_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.5m

statsmodels-0.10.0-cp35-cp35m-manylinux1_i686.whl (7.6 MB view details)

Uploaded CPython 3.5m

statsmodels-0.10.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.10.0-cp27-none-win_amd64.whl (7.8 MB view details)

Uploaded CPython 2.7Windows x86-64

statsmodels-0.10.0-cp27-none-win32.whl (7.3 MB view details)

Uploaded CPython 2.7Windows x86

statsmodels-0.10.0-cp27-cp27mu-manylinux1_x86_64.whl (8.1 MB view details)

Uploaded CPython 2.7mu

statsmodels-0.10.0-cp27-cp27mu-manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 2.7mu

statsmodels-0.10.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.6 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.10.0.tar.gz.

File metadata

  • Download URL: statsmodels-0.10.0.tar.gz
  • Upload date:
  • Size: 14.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0.tar.gz
Algorithm Hash digest
SHA256 65f321640e21134fc18b312fb2f3edcfbd23ddc36831a06e2445f9f2d7c01aba
MD5 7635e7624c2f8a2908041749eb62d51a
BLAKE2b-256 ffcdd97aae2d2a96231288489eaeb08f91a62c48d83e345fb0ea777472fdb3d6

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 d2ee2aab367f53eb3c5a88d241ce26db5d590a61979bb892497ba877e7240a9f
MD5 4dc9b9c21455e10003189f3e4ba615eb
BLAKE2b-256 b6b67377d2e12b3734123f5957a3e078c7957698abc3296288197c0e8a2cd5d4

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8aa55ab14842fa80f80a02ad28aadb28602ff69df4a2caefbe9232906c34c963
MD5 c6c3a50552d8388c284c49a5a6ed6c19
BLAKE2b-256 6d0c1051f86b2349009354413ce534ace9e4bce486adcbdcc48ced52940be9e9

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bbe50f3ba48a47bedc7822e8e5b4e1e063386b4aa7d0a567e5b125d9ede2a6b4
MD5 02b48858919be6c5d4815490632ab49a
BLAKE2b-256 4ce74aa52aac72bd8eb3ada35afa70bb2349df127700eb5c30820a7776759553

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c662f952b72eeeb82b77576a5f40bdc7e78908002decfc215cd3fa5f301e00e6
MD5 a412054b512670b0ee0fc59a7fe81229
BLAKE2b-256 04b4a6607afc459060bc39a837e687a645bb33d9bf5692f1451dc20bdc963632

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp36-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 e2f04f5b3dd6a980b95dd913f84fd22b5e695ddd9a26ffc268fec8741c40a8e2
MD5 e8e877a2fd60f81532a375cc2888b435
BLAKE2b-256 ab3fa05dbe9113e87df5c4138f4a6cc88b44305cdc2f182d80d4e77f514e8528

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp36-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp36-none-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp36-none-win32.whl
Algorithm Hash digest
SHA256 b5009d5f0fb33976310a106dba2602e28b79a5a1c85d749820d7c75fcd4635b7
MD5 7df454486d9760af3035fb9f045c1c4b
BLAKE2b-256 b6e8cb3c5543c97f475fce994664abd3f68579128d7b5f0407da0f133aa26085

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 55a374ff71cec09bfca635432abfd1ba5dff21b02c070428b6adf3d8b253c0c0
MD5 b3d994b349f80883999b6797196ddcff
BLAKE2b-256 813f574a6cad83e1b5f2b00eb377b9f420892826072043047058cab4c0a26693

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6e0d1dacf56bf505a5e04156c8b4642b53d0ca652465ce70fbdfc0ad9db76b18
MD5 eaf4577f51559cb56961dd4405b0db2b
BLAKE2b-256 225566ed277587ee3494acfdd19114d57cfe4578687e51e74aac95682eaf789c

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1770ddf720e80cb944cd1a27d4a926af4a583599eecd2c8c733742d8b9b01c66
MD5 d72e921698e244b87f243635de661d05
BLAKE2b-256 7599a10bb8fa9a2fd0df09e8dd11a23a1aa413d7f19cac85c8788c86754e290d

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp35-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 6e8c03755f8f0d73ce419e17cbd38df941919bc7018c0ef2b0141bb2f6c65ff8
MD5 a1da728f3f00abf7bceca6dd731bb569
BLAKE2b-256 29075cc6c8180c366740659e79339d5f47de81b89ec6f5322e29678dbb775978

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp35-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp35-none-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 b8fcb3f75fb95191ca8496ceebb61d34777e796191c46fd08129b6a1f17a4e8a
MD5 e380d68c0903b0ff7222a04b77a781e8
BLAKE2b-256 c11fb5a1f32271f7e4b295d932dbf523f65e7c90b1b7dc4a3038e93201a9a430

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ccb9b53b74410d5728a7868b8255fa638a40635d7fed937877f76efb468ccab4
MD5 77519337c5047e5f93214cb9e9c504a7
BLAKE2b-256 6c9230013c306dde851779d04cbadad33384f4568e7e0ddecf751136ca07802e

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a4ac11d0e3e577ae8b8a2ad322e3be04ab6f3fa24fdadf33d383bf497f9f02d9
MD5 1fe714827c49fbe160008d98a1681c23
BLAKE2b-256 b0a4972b69e64ab0d05d6269b05a518b9eae8215fb9cdd138f0c149c64dd1493

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d1a346a6897f9e236308184fcb729585a1604ab27f88674babd0ffb2931d5f3e
MD5 7e608bf52ae9d2dba01bfcaf8e732cd7
BLAKE2b-256 f914a946b38efaeba9691d0620fc2ffb63ea8d88ad89e678a317bda9729b053a

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp27-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 c3a0894e4af79299ff43515e6b019a64a5c355f20058094f858544e04459a562
MD5 e95ecb141ee79898d50e26e047dc8301
BLAKE2b-256 542b150acc738e3deb8ae70b485de5b9241026f198f7e926d823495323419b9a

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp27-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp27-none-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp27-none-win32.whl
Algorithm Hash digest
SHA256 0c3dc2b69b7277bbda564306f9527bc4021aff692e3e2b8f9bf1360f0082a2ba
MD5 58b69cfcfed9f0c1c1f6c1a638713324
BLAKE2b-256 6ab2e860e9e2868e4f93595591ac2adaf6347a672ee2cd31fa83df286837de8c

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 78166e9b64fb34b5985bc701bd8bcdc6aaf75138d0c3217f38c3cb1df96197d5
MD5 709a8a3a3b31ffa1376b5b26e37a87ef
BLAKE2b-256 e76f1b70365237bd23d2923c7db98448a82d02716c94571ddaafd124602c969d

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.0-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9282cf552c43ec5b68c3b20f263cc8ec10cc5f899002e341f7e288ab78ea8147
MD5 6b34e4f0d87a0d3887e5976d46e4ae5f
BLAKE2b-256 72bc5af0ac2d3f20bca55d69e1d09750ba99dcf680ab7f4fd1303f6a9dd55808

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 923eff6a3acd0e9caf1cefadca46b02bd84df75310af65b2ebb7de18e3dd021d
MD5 4af3c226ecfb171ab18f2e2aae716a69
BLAKE2b-256 0f52fc320c4e42a151bc288467f71d39975456ab8a85e5c037d828d6a82142c6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page