Skip to main content

Statistical computations and models for Python

Project description

PyPI Version Conda Version License Travis Build Status Azure CI Build Status Appveyor Build Status Coveralls Coverage PyPI downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction modle, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.12.2.tar.gz (17.5 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.12.2-cp39-none-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.12.2-cp39-none-win32.whl (8.8 MB view details)

Uploaded CPython 3.9Windows x86

statsmodels-0.12.2-cp39-cp39-manylinux1_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9

statsmodels-0.12.2-cp39-cp39-manylinux1_i686.whl (9.3 MB view details)

Uploaded CPython 3.9

statsmodels-0.12.2-cp39-cp39-macosx_10_15_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

statsmodels-0.12.2-cp38-none-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.12.2-cp38-none-win32.whl (8.8 MB view details)

Uploaded CPython 3.8Windows x86

statsmodels-0.12.2-cp38-cp38-manylinux1_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8

statsmodels-0.12.2-cp38-cp38-manylinux1_i686.whl (9.3 MB view details)

Uploaded CPython 3.8

statsmodels-0.12.2-cp38-cp38-macosx_10_15_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

statsmodels-0.12.2-cp37-none-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.7Windows x86-64

statsmodels-0.12.2-cp37-none-win32.whl (8.7 MB view details)

Uploaded CPython 3.7Windows x86

statsmodels-0.12.2-cp37-cp37m-manylinux1_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m

statsmodels-0.12.2-cp37-cp37m-manylinux1_i686.whl (9.3 MB view details)

Uploaded CPython 3.7m

statsmodels-0.12.2-cp37-cp37m-macosx_10_15_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7mmacOS 10.15+ x86-64

statsmodels-0.12.2-cp36-none-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.6Windows x86-64

statsmodels-0.12.2-cp36-none-win32.whl (8.7 MB view details)

Uploaded CPython 3.6Windows x86

statsmodels-0.12.2-cp36-cp36m-manylinux1_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.6m

statsmodels-0.12.2-cp36-cp36m-manylinux1_i686.whl (9.3 MB view details)

Uploaded CPython 3.6m

statsmodels-0.12.2-cp36-cp36m-macosx_10_15_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.6mmacOS 10.15+ x86-64

File details

Details for the file statsmodels-0.12.2.tar.gz.

File metadata

  • Download URL: statsmodels-0.12.2.tar.gz
  • Upload date:
  • Size: 17.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2.tar.gz
Algorithm Hash digest
SHA256 8ad7a7ae7cdd929095684118e3b05836c0ccb08b6a01fe984159475d174a1b10
MD5 af466764683e41fabde27547d5c50fd6
BLAKE2b-256 10260fd61f95667e56fd597ecca715dff3623ed1122b6f895ed2b4dfb54afc04

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp39-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 94d3632d56c13eebebaefb52bd4b43144ad5a131337b57842f46db826fa7d2d3
MD5 cc30f783dd09e18c10fcc02da8575abf
BLAKE2b-256 83c3a25300c5674901a77d0e2822b0093d1e28ddecda15df9e3e06f0113b718d

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp39-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp39-none-win32.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp39-none-win32.whl
Algorithm Hash digest
SHA256 3aab85174444f1bcad1e9218a3d3db08f0f86eeb97985236ca8605a0a39ce305
MD5 afd8ff9b949e7059f5ebb857bc9d19c8
BLAKE2b-256 7def83c86d612b9015f0f21aec7f4d9c1f3e6442700022a34985442ca6cb1d98

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f61f33f64760a22100b6b146217823f73cfedd251c9bdbd58453ca94e63326c7
MD5 d76245f2ceb38431a60151bea5871089
BLAKE2b-256 c862d77baf956f6d18ec56c5d3d9b61fa9c0e496c181e12b4962ab9ac4d4cb01

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8f93cb3f7d87c1fc7e51b3b239371c25a17a0a8e782467fdf4788cfef600724a
MD5 60bb111386fecd46147586e21d9496f9
BLAKE2b-256 703c375320271b5c30305d5148798f2086a9f9b4fa3334006af43012fea228ae

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c3782ce846a52862ac72f89d22b6b1ca13d877bc593872309228a6f05d934321
MD5 9ea68bcdc1fae85f9ec4ea414d421023
BLAKE2b-256 df79089b42593d027f7b9b78f46db652dcfee0bdbd0aed94b5290408f73ba5ad

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp38-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 1fa720e895112a1b04b27002218b0ea7f10dd1d9cffd1c018c88bbfb82520f57
MD5 30e14a09cac5df5f59664fd6ae9dd489
BLAKE2b-256 3f96dead6b36004cd18172f6633745530a0c9b884f8683b5b1e8dd449e88aca7

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp38-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp38-none-win32.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp38-none-win32.whl
Algorithm Hash digest
SHA256 cbbdf6f708c9a1f1fad5cdea5e4342d6fdb37e42e92288c2cf906b99976ffe15
MD5 0f72d9a4122d7ce705563c0387195232
BLAKE2b-256 b008cb68a21eb0be1f5619f8bdd6a50cc456e5c86262c80eb3c4e2aa5f1386d3

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 587deb788e7f8f3f866d28e812cf5c082b4d4a2d3f5beea94d0e9699ea71ef22
MD5 0d10c192eda2d680a13474b9dad15794
BLAKE2b-256 bc7595096c520c34169244e5a3b488e282acae2c2aece99909d57dee45360c82

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f3a7622f3d0ce2fc204f43b74de4e03e42775609705bf94d656b730482ca935a
MD5 48dbda951497f8a6791ddbef086f4234
BLAKE2b-256 55a36c575dd65f0dbb8ee7cc837c27e2c5d40b1dd64c0c2bb38cc48ab39ba3c5

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3e94306d4c07e332532ea4911d1f1d1f661c79aa73f22c5bb22e6dd47b40d562
MD5 69efe0e8297b5b644649a5cc7a8de21e
BLAKE2b-256 a001f421e69001f1bc06788f61b3dc894338443bac80ac20333debc2d53a41f8

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 93273aa1c31caf59bcce9790ca4c3f54fdc45a37c61084d06f1ba4fbe56e7752
MD5 7f7d63d140ab3bec4a7502140067d53a
BLAKE2b-256 6cc2af416a82fd7f051a5a0eae3abeb0a098baa774c306631a5762b1e011d279

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp37-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp37-none-win32.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp37-none-win32.whl
Algorithm Hash digest
SHA256 0197855aa1d40c42532d6a75b4ca72e30826a50d90ec3047a404f9702d8b814f
MD5 93cd2032208e29381c3e15b71c48ad7d
BLAKE2b-256 7ccc8055f8292fcada08081e138f2c858dea8b64a4b6883340499e40fac744bb

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 43de84bc08c8b9f778502aed7a476d6e68674e6878718e533b07d569cf0927a9
MD5 9b835516f2facaf7786bd74ea08d1f5b
BLAKE2b-256 da698eef30a6237c54f3c0b524140e2975f4b1eea3489b45eb3339574fc8acee

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a3bd3922463dda8ad33e5e5075d2080e9e012aeb2032b5cdaeea9b79c2472000
MD5 b754c240ccf6526cc001f1b558a2de23
BLAKE2b-256 4fac15ab8e589630d1fe803f7729e7abb9632db399ea5640309e2ad9eb676189

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c48b7cbb37a651bb1cd23614abc10f447845ad3c3a713bf74e2aad20cfc94ae7
MD5 d897fd723b37b95fcc29338c9c4359d4
BLAKE2b-256 10f1f8ab01ef6319fa24441e565ee767e1be328eea7eee5ce65b0427c69a983c

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp36-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 aaf3c75fd22cb9dcf9c1b28f8ae87521310870f4dd8a6a4f1010f1e46d992377
MD5 0e6284d72bb3920976416351f6e42570
BLAKE2b-256 092769194eb3a1b6ea6653e1d9cf745b38a2e13b851abc6bfaa9c05212b71a09

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp36-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp36-none-win32.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp36-none-win32.whl
Algorithm Hash digest
SHA256 5d3e7333e1c5b234797ed57c3d1533371374c1e1e7e7ed54d27805611f96e2d5
MD5 d589fb3bc8f51a5cd0f658f0ef0c18c8
BLAKE2b-256 913b05f0ed105fd10b872009fe3a4c63b34baefcb764d505cce9a07058fa468d

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 37e107fa11299090ed90f93c7172162b850c28fd09999937b971926813e887c5
MD5 d32221a37909db3f18438d635b0b858a
BLAKE2b-256 0d7bc17815648dc31396af865b9c6627cc3f95705954e30f61106795361c39ee

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4184487e9c281acad3d0bda19445c69db292f0dbb18f25ebf56a7966a0a28eef
MD5 0d350c617ab222557fc36cac7a482871
BLAKE2b-256 617de2804cebbd048fd623d8f726f873ff14e31c5295e3a032c0b6c48af04fb5

See more details on using hashes here.

File details

Details for the file statsmodels-0.12.2-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.12.2-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for statsmodels-0.12.2-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c1d98ce2072f5e772cbf91d05475490368da5d3ee4a3150062330c7b83221ceb
MD5 975b8ae5adb8a9a1356f600640285749
BLAKE2b-256 b983de126d77143f279059f04fcfe1104d996cf6cb18f5ce77aba86f2391e71a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page