Skip to main content

Statistical computations and models for Python

Project description

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.13.5.tar.gz (18.4 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.13.5-cp311-cp311-win_amd64.whl (9.0 MB view details)

Uploaded CPython 3.11Windows x86-64

statsmodels-0.13.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

statsmodels-0.13.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

statsmodels-0.13.5-cp311-cp311-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

statsmodels-0.13.5-cp311-cp311-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

statsmodels-0.13.5-cp310-cp310-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.10Windows x86-64

statsmodels-0.13.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

statsmodels-0.13.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

statsmodels-0.13.5-cp310-cp310-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

statsmodels-0.13.5-cp310-cp310-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

statsmodels-0.13.5-cp39-cp39-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.13.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

statsmodels-0.13.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

statsmodels-0.13.5-cp39-cp39-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

statsmodels-0.13.5-cp39-cp39-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

statsmodels-0.13.5-cp38-cp38-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.13.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

statsmodels-0.13.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

statsmodels-0.13.5-cp38-cp38-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

statsmodels-0.13.5-cp38-cp38-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

statsmodels-0.13.5-cp37-cp37m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.7mWindows x86-64

statsmodels-0.13.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

statsmodels-0.13.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

statsmodels-0.13.5-cp37-cp37m-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file statsmodels-0.13.5.tar.gz.

File metadata

  • Download URL: statsmodels-0.13.5.tar.gz
  • Upload date:
  • Size: 18.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.5.tar.gz
Algorithm Hash digest
SHA256 593526acae1c0fda0ea6c48439f67c3943094c542fe769f8b90fe9e6c6cc4871
MD5 b5f2f644c99ec300075df40d87900f08
BLAKE2b-256 a47da919dbad04ec31741eee6a7f7df4a9a9e57e3b863900e48b079a6b832aab

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 857d5c0564a68a7ef77dc2252bb43c994c0699919b4e1f06a9852c2fbb588765
MD5 557e2aa414302cd7dbe6c10cfa405bcb
BLAKE2b-256 b7c07c4a319f93a35e96ce908f58ef57869d57484d83ece3282b98a5e3f07690

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d5cd9ab5de2c7489b890213cba2aec3d6468eaaec547041c2dfcb1e03411f7e
MD5 818b063afdd579b2e85d95c9fe1d5f7a
BLAKE2b-256 8adbd32d16254ba92da4a12a5408cc6474d2450520c96004f6099d1716f7cb88

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 01bc16e7c66acb30cd3dda6004c43212c758223d1966131226024a5c99ec5a7e
MD5 b2b5181405eddeb11efb0e0cf5fe72e4
BLAKE2b-256 5d602482ded8f067bd84cbc3b49ced712fe7211417a98ec74f53beee2dae574f

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1d89cba5fafc1bf8e75296fdfad0b619de2bfb5e6c132913991d207f3ead675
MD5 97ee32e9fce3810b540649170a0a4d43
BLAKE2b-256 6756ce9b598e7601c1d1c9da9c9aae3e5950db53dba6e098235cc6ee72de768b

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9061c0d5ee4f3038b590afedd527a925e5de27195dc342381bac7675b2c5efe4
MD5 3333a086d1e6ba4c5ffe0c1313a85364
BLAKE2b-256 accb010c757c7142d221eba947da4a2dddcdd14ca5c67b70e84d421a4af74584

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 159ae9962c61b31dcffe6356d72ae3d074bc597ad9273ec93ae653fe607b8516
MD5 290ceb6694a393990f2cdc4d4ccd57df
BLAKE2b-256 bf0b7f303511e59a4434dd0e9a8c4d550b7a5f32acb7c94821ccd3a465ef3137

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 072950d6f7820a6b0bd6a27b2d792a6d6f952a1d2f62f0dcf8dd808799475855
MD5 9762aaaa52319d089ec7361c4311d546
BLAKE2b-256 b1a53e573d7e0f79e8052628357ae75109b34293556fcd0709e75dee25eed0e4

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5cc4d3e866bfe0c4f804bca362d0e7e29d24b840aaba8d35a754387e16d2a119
MD5 c00bea4fddc4d415d8f7451fc9c382df
BLAKE2b-256 52b503f8ed0206df4f7afe05cf044abe3ce2b6812e69f9976ef907b1eee91b8d

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f148920ef27c7ba69a5735724f65de9422c0c8bcef71b50c846b823ceab8840
MD5 29c0470bed81893dbe3e4c06f5c6ec77
BLAKE2b-256 e09c3f92cb98d9e632ad8e38b9bb45f332be57c6cc74852da936a18f97f76ab7

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c75319fddded9507cc310fc3980e4ae4d64e3ff37b322ad5e203a84f89d85203
MD5 c05d11e7f18ef8d6043999403453b1f3
BLAKE2b-256 3443f47848a73f8d0a57b54a00bc5a75ca3e4671e90d66d335de341066900960

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2ff331e508f2d1a53d3a188305477f4cf05cd8c52beb6483885eb3d51c8be3ad
MD5 a735c8ae54675151dcef668865fa3af4
BLAKE2b-256 74050c1922fdfd3d3cec2fdef5a9dad53e7fd63a201c5f2c19d71fb17a2b96e6

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73f97565c29241e839ffcef74fa995afdfe781910ccc27c189e5890193085958
MD5 c0013527155a6ddf6d20dcfcb0455da5
BLAKE2b-256 cb9a4a19771f8f16c23c57043d0d4fc3cbfe429360b9639d412d0af44932b90d

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b034aa4b9ad4f4d21abc4dd4841be0809a446db14c7aa5c8a65090aea9f1143
MD5 bef06b6a383056f1fc5988360ac1c60b
BLAKE2b-256 2efb7e8847097087206c23f449f1b1e6a91d65c0f120d4e98df709655eebc286

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f0e5c9c58fb6cba41db01504ec8dd018c96a95152266b7d5d67e0de98840474
MD5 281c1562e911dd1510a16a41b92b32b2
BLAKE2b-256 978b84c84f42ca99d5a9124172e331db2ff1434fea1d769b72194f135dc0d914

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b0d1d24e4adf96ec3c64d9a027dcee2c5d5096bb0dad33b4d91034c0a3c40371
MD5 a9aff8a02798acf8d0184e7e0dd0c933
BLAKE2b-256 81c254e2c2b7dc86ffa65812643074ce8553e7529762a3e1e04be81179ba204e

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 84f720e8d611ef8f297e6d2ffa7248764e223ef7221a3fc136e47ae089609611
MD5 696b3252061bed005933b67323b443ef
BLAKE2b-256 bf1a3bfedcdf9d042b85fadb434346ee203139d1deb3cf52196bfd4c932b4f5b

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 046251c939c51e7632bcc8c6d6f31b8ca0eaffdf726d2498463f8de3735c9a82
MD5 efc5e6264a6d65ffc11ac26b5e5720f9
BLAKE2b-256 60de7cd008964ff647cdb6266079b0fc3029d220b546b6f8727866bef63b18e1

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 947f79ba9662359f1cfa6e943851f17f72b06e55f4a7c7a2928ed3bc57ed6cb8
MD5 6a12f4a51162e0dd440ddee8e5594bd5
BLAKE2b-256 a9777b106e8581b4bd53fc92261616671467087b6b3d474a96675f16d98188f7

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2c46f1b0811a9736db37badeb102c0903f33bec80145ced3aa54df61aee5c2b
MD5 e75eca3e53137f1a939dc4be5b29b9b9
BLAKE2b-256 66ebdb7ab936207854630bb071816c947ef8a238f32b40adba60fcdd2c523d7a

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bc1abb81d24f56425febd5a22bb852a1b98e53b80c4a67f50938f9512f154141
MD5 29f4a4a4e92e937207bcf686795efad2
BLAKE2b-256 a95826ae30180658cea7213dac6f3c82eb917b6d1ecb45eb72c33e57aae19192

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 872b3a8186ef20f647c7ab5ace512a8fc050148f3c2f366460ab359eec3d9695
MD5 d99bae0477fd89df8b78fbb421d0ea4f
BLAKE2b-256 6274b54c3defc82f61301aafa56b4abd67f830ab4575dec13a1b895f09d35dfc

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b829eada6cec07990f5e6820a152af4871c601fd458f76a896fb79ae2114985
MD5 e7116897da908cff060667ab8a971c46
BLAKE2b-256 918e062b268b8e6d19382cbf2f97ac0384285511790718ce90bbfb1eb5e44b07

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b21648e3a8e7514839ba000a48e495cdd8bb55f1b71c608cf314b05541e283b
MD5 50386b49b4dde8d207355591e1e4234c
BLAKE2b-256 00176853123ccfcd68b8c17bd8148f28c12213b5fe8371ad5cb7ea7bcab51c0e

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a5348b2757ab31c5c31b498f25eff2ea3c42086bef3d3b88847c25a30bdab9c
MD5 00c620c9b4cd7b70215eba58bce408cd
BLAKE2b-256 f59fbf8714c28c566da38080c2ae7602a85bb3cdbd99c8974c166bfe5ce5a1bf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page