Skip to main content

Statistical computations and models for Python

Project description

Travis Build Status Azure CI Build Status Appveyor Build Status Coveralls Coverage

About Statsmodels

Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction modle, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of developement and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on our mailing list.

http://groups.google.com/group/pystatsmodels

We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.10.1.tar.gz (14.1 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

statsmodels-0.10.1-cp37-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.7Windows x86-64

statsmodels-0.10.1-cp37-none-win32.whl (7.2 MB view details)

Uploaded CPython 3.7Windows x86

statsmodels-0.10.1-cp37-cp37m-manylinux1_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.7m

statsmodels-0.10.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.10.1-cp36-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.6Windows x86-64

statsmodels-0.10.1-cp36-none-win32.whl (7.1 MB view details)

Uploaded CPython 3.6Windows x86

statsmodels-0.10.1-cp36-cp36m-manylinux1_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.6m

statsmodels-0.10.1-cp36-cp36m-manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 3.6m

statsmodels-0.10.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.10.1-cp35-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.5Windows x86-64

statsmodels-0.10.1-cp35-none-win32.whl (7.1 MB view details)

Uploaded CPython 3.5Windows x86

statsmodels-0.10.1-cp35-cp35m-manylinux1_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.5m

statsmodels-0.10.1-cp35-cp35m-manylinux1_i686.whl (7.6 MB view details)

Uploaded CPython 3.5m

statsmodels-0.10.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.10.1-cp27-none-win_amd64.whl (7.8 MB view details)

Uploaded CPython 2.7Windows x86-64

statsmodels-0.10.1-cp27-none-win32.whl (7.3 MB view details)

Uploaded CPython 2.7Windows x86

statsmodels-0.10.1-cp27-cp27mu-manylinux1_x86_64.whl (8.2 MB view details)

Uploaded CPython 2.7mu

statsmodels-0.10.1-cp27-cp27mu-manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 2.7mu

statsmodels-0.10.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.6 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.10.1.tar.gz.

File metadata

  • Download URL: statsmodels-0.10.1.tar.gz
  • Upload date:
  • Size: 14.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1.tar.gz
Algorithm Hash digest
SHA256 320659a80f916c2edf9dfbe83512d9004bb562b72eedb7d9374562038697fa10
MD5 7eeb04ca15ff15b74bb32c6497e47ac0
BLAKE2b-256 d37d4f1f18ad782d6b913aeff17d553859fed40751ecf15ef698c69811e622e6

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 df122a07c65a92ba9087af9626ddd44c8de0236ecfd7e42bf6a71f186c888f4b
MD5 6750e7211d15648dd605cfa7b800dd43
BLAKE2b-256 0aed714934d2836a8d03859275ce370f249dadb88c74dd74e3f3a888941166ab

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp37-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp37-none-win32.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 8741ae7d1c5a7abd96a9cc1840d02a938745dabf38edc645d388cf3fc0f2c0d5
MD5 58eae07461b32fc95374b72414dab7c6
BLAKE2b-256 9c04353bea47ec9a56300d76affd985faf96f43c3f655ef6dccf5ce144266e0b

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3b2a411a92ad7382901744e69fb4a61fd9053a13a267175674eb2112cda143e0
MD5 f2c36a71467fe2e6514e7f3b1d4ba9ed
BLAKE2b-256 01cb614f37ac4a9919eb0dbc0cd9eb939d1a33299f54f10e8a705dd9b08c2f3f

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f1ba91668eb673dfb97b9a04420dad386a80acc93d8dde0b0884c127be530024
MD5 981cb2e4ce0af1bf3e1f32f378b2c628
BLAKE2b-256 b5b850f9b86bbd87b1de961f439c2b93dfc41dd0cb9d65f6b7d824b287b50b21

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp36-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 cb9ae882becae277e28a5e683582725aedc01a41fb36ed9eee0bb90bcfd1a457
MD5 0262db17be6c3659a303846fd47fb143
BLAKE2b-256 d9bee52172762578ed6df2d0ab1c4dc567a69aa52509e77a825fdff355c8390c

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp36-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp36-none-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp36-none-win32.whl
Algorithm Hash digest
SHA256 509b5ad86361024a7b9a084f4f9b435dc240d68801c128938abd6128c7360500
MD5 155b64642885be377922aedbaceeacd6
BLAKE2b-256 2e64d9d29443d0636e36b4f46c27330613771acbd66651ff9d79a16263e4e7ce

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e061aa63412d4051ce69c37381848d259a15c15cb8bace4d3727bf9b7fbafb0c
MD5 f412bbd26a87ad3eadf282ec96943c4a
BLAKE2b-256 60d6e9859e68e7d6c916fdff7d8e0958a7f5813485c52fc20d061273eaaddb0c

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 249ddab20cc0a4497151b3343cf849809712e62ba495a889c861bdcdb038e795
MD5 071bc3562e9bc536663c6c00056c3900
BLAKE2b-256 f7323c9ff0b4264725eea8c1e5f2d2198e49ad3bba9de0eddbb2ab519e89bcdd

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 edb9f2d4bb23b83af6c31cddb3a50e800dad07f3fb33e44f876139e6c32b23fa
MD5 7265bba23c81c253b084efb6fe7302ac
BLAKE2b-256 a194dd7fce3210ca415aeb6d11d16cae30bfce849cf6b232cffeaee83259276f

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp35-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 0013c9c5c8ff1cfad519da1284e34297b9882d9708c768b23f3cf49d40657fa0
MD5 951cc4fbbdf248ce68008d5ede7aaf9d
BLAKE2b-256 ebd7a5a2cf6fe2ad89727eb4d5de9290a498ee491aed5800ebb580e848cdcc21

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp35-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp35-none-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 efb250efe8d1cddf1fd5118de2a5e40523711b9b4c5b816a072635f07e20ab00
MD5 4045df33079f1f1edc29ed6d8c77017f
BLAKE2b-256 758d8d198f94be2937911d9b2d365277036eb3ca99ee480594fbc1432356e20a

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b81b8c08b884d8029e14156aa836d878cf528bef6111d421db82eaa33dbe6559
MD5 08f4ab82bb00c832f756adacd7eeffed
BLAKE2b-256 dae999d8bfba9986dfb69bc2206e7a60711de86eaf482217288a4787f2b2f90e

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bc0a836185caee3f532ea1fc41fe3792289241f268d70c6e978343d061bceede
MD5 5dd01de3b66009f8e1b02b9c7bc294d4
BLAKE2b-256 c442bf3f4996acf7570261d6cc06f7f9dfcefc4ac256ac023cd7b2a47d90a803

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 671e5917241edc9c69b08157e6b258105a611541482a41ebab88bcb646526465
MD5 a249e81c40d19de3a5e153834d5628b7
BLAKE2b-256 7da21a5b6e8987a798cd74594a19cb7eb4ca253b7736f5399ff13e4eec237e75

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp27-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 13970b517e3b6a7b22c4ccb0f8df040952904a8a5e27186843a05720b999d759
MD5 d87b89caa2bd1d8fe50a67dab2e081b8
BLAKE2b-256 d885844d41b51fe068cf671867589b4dd5d7dc60f09ecd952add3c8ec0b84876

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp27-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp27-none-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 ba4554bc43c23700734f970d09f45d9fccd2fc97441d0ce1a448bae35d56c29e
MD5 ffec5d964fb172bfa6a002e5c008ef54
BLAKE2b-256 21dc36246f586827150e3f83b4c1378faa1fd005bf2a62c0d848a566a0c33203

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 248a3b2e3774fda04f40e533da1a5e96d97c153df78c757e4468ccdac5f56256
MD5 f5cda84bcb5438ba8233a214a5c529d9
BLAKE2b-256 70c6f7944cecacd0b26c8dc026fb7e2c04f7b3f65365447ee851c0dad988ab1b

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.1-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 53e1bb1671b9f93e706d007bb97cc63e3d0c59954e08cb35a62d7b6f7405ee29
MD5 c425c34c914b87e43f7aaa91c7002756
BLAKE2b-256 ecc5a4cb34ed110a48c560530d4ce2cf796cfd5fa934fec7a218db85d8f178cc

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ef1b80d0f82f69bef8d1e766112af3827c1d4b09f4c146ecdf5901d0d2dc6986
MD5 ac748a113f61f4e002a12d39ec81fc09
BLAKE2b-256 2dbf4fab954764a786921c64f84051cc2e7c2635fd1669dfdfb3489aaf2bad5f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page