Skip to main content

Statistical computations and models for Python

Project description

Travis Build Status Azure CI Build Status Appveyor Build Status Coveralls Coverage

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction modle, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://statsmodels.github.io/dev/test_notes.html

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.11.1.tar.gz (15.4 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.11.1-cp38-none-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.11.1-cp38-none-win32.whl (7.8 MB view details)

Uploaded CPython 3.8Windows x86

statsmodels-0.11.1-cp38-cp38-manylinux1_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.8

statsmodels-0.11.1-cp38-cp38-manylinux1_i686.whl (8.2 MB view details)

Uploaded CPython 3.8

statsmodels-0.11.1-cp38-cp38-macosx_10_13_x86_64.whl (8.5 MB view details)

Uploaded CPython 3.8macOS 10.13+ x86-64

statsmodels-0.11.1-cp37-none-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.7Windows x86-64

statsmodels-0.11.1-cp37-none-win32.whl (7.7 MB view details)

Uploaded CPython 3.7Windows x86

statsmodels-0.11.1-cp37-cp37m-manylinux1_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.7m

statsmodels-0.11.1-cp37-cp37m-manylinux1_i686.whl (8.2 MB view details)

Uploaded CPython 3.7m

statsmodels-0.11.1-cp37-cp37m-macosx_10_13_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.7mmacOS 10.13+ x86-64

statsmodels-0.11.1-cp36-none-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.6Windows x86-64

statsmodels-0.11.1-cp36-none-win32.whl (7.7 MB view details)

Uploaded CPython 3.6Windows x86

statsmodels-0.11.1-cp36-cp36m-manylinux1_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.6m

statsmodels-0.11.1-cp36-cp36m-manylinux1_i686.whl (8.2 MB view details)

Uploaded CPython 3.6m

statsmodels-0.11.1-cp36-cp36m-macosx_10_13_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.6mmacOS 10.13+ x86-64

statsmodels-0.11.1-cp35-none-win_amd64.whl (8.1 MB view details)

Uploaded CPython 3.5Windows x86-64

statsmodels-0.11.1-cp35-none-win32.whl (7.6 MB view details)

Uploaded CPython 3.5Windows x86

statsmodels-0.11.1-cp35-cp35m-manylinux1_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.5m

statsmodels-0.11.1-cp35-cp35m-manylinux1_i686.whl (8.2 MB view details)

Uploaded CPython 3.5m

statsmodels-0.11.1-cp35-cp35m-macosx_10_13_intel.whl (8.3 MB view details)

Uploaded CPython 3.5mmacOS 10.13+ Intel (x86-64, i386)

File details

Details for the file statsmodels-0.11.1.tar.gz.

File metadata

  • Download URL: statsmodels-0.11.1.tar.gz
  • Upload date:
  • Size: 15.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1.tar.gz
Algorithm Hash digest
SHA256 5bde3fa0a35a91b45dba7cbc28270b5b649ff1d721c89290883f6e831672d5f0
MD5 b07974576f5befdeb2c930f2b5f8a702
BLAKE2b-256 9164b3c3e73bbec1ae6bee1b6a948bfaebef9c8a9b1e90756e8e1d110c6ff810

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 b9b9cb6ced4f9b644cfd0b6a9d4a88e406c643dba4f2ad61e22d03ee48bc7731
MD5 3ef9193cb01c1e683cffe1af2ad0c2b2
BLAKE2b-256 2b8d7db2a7005ca66a105ff758c84a75290cd3c6ed4b2bda091a29cb03c7899b

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp38-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp38-none-win32.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 6371267d051b555898611913afa4a46144e9d29a234ef32c2e36e558e88a8de9
MD5 3b3037d4e0e78e75eeb6a3452a38b9e2
BLAKE2b-256 218e198d8d276cf8ab753679ab3db558675355e0dd286b8243f1c8a67d4f99db

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6243bc78bc805acee7690098fa749094895bb3c2dd0b7f7ac8d57f97fe2b1eb2
MD5 5f20a24533676c0bbcf5d4e0975c3b62
BLAKE2b-256 8491daae8f782758ebef9d701eb56cb42abdbe89b6245b6002fdaed60b9534aa

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a4fcb03d2a5d0f37d0ecb38f6d9d10a3ab6f9e2e583c3be4d4615484d5d10e88
MD5 f312206d9bfdf86ca6d70552be977ec4
BLAKE2b-256 6160e04515b4d1e1d04479dcfb2a158a00f70210f06ea4641246c4ff87b329fe

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 621f2ec00ff8a4749cef3c9cc11c12ac2ee549ecf3ccfde626b3f1461165f0e6
MD5 95c6e30a77a2a49ed0a03aba1e27b0e7
BLAKE2b-256 337576e19ac7fd7404bb94b540bfd951b5513c7edeb1c7801f8d304766b57d5b

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 434240abd14f4998ec6350473cd105e9977e930635ecf7e352d641d729dbc2a2
MD5 b19519683c52cd5b1949251873a0fb95
BLAKE2b-256 863cd118973b8d85eeba14b3a306a5a06f920dd92878fa57c264dbe70b83a197

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp37-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp37-none-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 f5e4928e230332260cb55458953dbbae6a63356f91d3242c7ba2d17dc6c4bd7f
MD5 d722df4496bb19ea63a29fb63da9a461
BLAKE2b-256 7f41bc1e2ec1600421b3f89cb47e45c74ce62cdbaac37be2ea0b85c961399cba

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 67e1a5d9fc6900209203cd446b2ed6822eb4b03581dea669c4fe97f512cfde36
MD5 8ee1023e4a88686227c59770d7e9c34e
BLAKE2b-256 7b6a0bf4184c3fb6f9f43df997b88de5784b4cb2f6bd19a5dc213463971076cf

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6e7e2cb74d8ae56cffc0581f3467cdcd16d8f7e97297974cefdf0d727020c287
MD5 d800c97bf506813e804f123a7c8c30be
BLAKE2b-256 6eee7bc34b0e73b84d30c896cb7be381d8a4ffe1fd8b5401efa30756d2195932

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 59403da80bdba84713d93f36897fba4fd3b2964a1b983816ed488a405abc18b1
MD5 df7262a28c4bc227b4bbeb9628accf36
BLAKE2b-256 bfa0f29d1644e74ecac3b86b7135f1f6058050e367568cbc493c981390c8ca34

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp36-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 49aa8ffbe0b0e2e86afa58dec6bd5c483898e9b8223d8a7d13b69b5ad144b674
MD5 e871a0e7703bcc798b9a61a85747f0bc
BLAKE2b-256 5b884e3d6e2595ecf8c370b640f218db8a045d2d17e088912e5f5fc2a4a07bc4

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp36-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp36-none-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp36-none-win32.whl
Algorithm Hash digest
SHA256 02e95c567ac77834210ecbe96a64eb939fc42669f95d583ac6184b00830db743
MD5 c74ecaf1f8697b84c181e73c3b0441f3
BLAKE2b-256 6524380d1c1eda000fd4d65723e1356e879ca948c1169e044f5922849d116107

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9efd2e27c08077330cecdbfb589cf84d735abface94e9a6387282a6a7c91362d
MD5 73855744a7259053f48094ebcd78f1ce
BLAKE2b-256 cb83540fd83238a18abe6c2d280fa8e489ac5fcefa1f370f0ca1acd16ae1b860

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bce1e6b94ade985a8319621c9ea4f7e312ed8cfcb5d93ab0cb0013c58b98680c
MD5 c0d8b8e5584d96cc20468dbf3e343528
BLAKE2b-256 9e97c4ecfa50a9391c40c1ab801f94a4201ced2d7ff5200ca77d0fd7a3e1b1a0

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp36-cp36m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.6m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5e7afc596164c1c7464ba3943721a9668aa0ce07853ce9881ac49d3a043784dd
MD5 9f66093c231a1ecae34bd660687d34c6
BLAKE2b-256 f0687e7ce7a1c6f4ec65083ae9be678d55a3c32d2b12baa579824fffba9b082e

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp35-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 f2ac0559d6ef824d5a47576f572de62b0f088ef4f912dd40298ee9ab20d3ef9b
MD5 1c05cdee712f6d1c5b7792ccd86da7a5
BLAKE2b-256 71c9e584902f4bcfdbd8d7694c60b203b11443bda0d20ddfe71d35dc451ae17d

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp35-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp35-none-win32.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 e728156ae279f05574ef9e840ec57f44c96c85ba14010169e9b4e1085d89642f
MD5 80dec84f5632d336ffe0b200c7ebbbe4
BLAKE2b-256 6827ddc9519e14be7b89951a208d96bd40bb2d371aed8d9c3ee3e3cac61e5053

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1e3ae5671cae0da8f94ce5e9331fc9880fe6210ffd5750ac961f84203d262763
MD5 53015805ee4ed878037da71a9f69d2de
BLAKE2b-256 8526f2f515443528e0939945b877e0f27f7c6faf2be4da45e2aaf172da82d2d3

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 92536c3579a6c7fbdaeb1c026781a17d4760e4b76ca861eaae05b2a43309dca5
MD5 68e11bc16e7e35f243f609fe71a90810
BLAKE2b-256 164811b570182f1c0054d0033890bd4b34cfdd1c779348aebf24457111e574ab

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.1-cp35-cp35m-macosx_10_13_intel.whl.

File metadata

  • Download URL: statsmodels-0.11.1-cp35-cp35m-macosx_10_13_intel.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.5m, macOS 10.13+ Intel (x86-64, i386)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.1-cp35-cp35m-macosx_10_13_intel.whl
Algorithm Hash digest
SHA256 47e0f27fe515fae06240a1f1dbcdce8b93417ea294b4965335f538627f711b10
MD5 8efa2428a408d6d4feb24b22dea2cc45
BLAKE2b-256 960c995b1064ef9dbfb932816feecd5639f0b434081753edefbc67f3795216c9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page