Skip to main content

Statistical computations and models for Python

Project description

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.13.2.tar.gz (17.9 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.13.2-cp310-cp310-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.10Windows x86-64

statsmodels-0.13.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

statsmodels-0.13.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

statsmodels-0.13.2-cp310-cp310-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

statsmodels-0.13.2-cp310-cp310-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

statsmodels-0.13.2-cp39-cp39-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.13.2-cp39-cp39-win32.whl (8.7 MB view details)

Uploaded CPython 3.9Windows x86

statsmodels-0.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

statsmodels-0.13.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

statsmodels-0.13.2-cp39-cp39-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

statsmodels-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

statsmodels-0.13.2-cp38-cp38-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.13.2-cp38-cp38-win32.whl (8.7 MB view details)

Uploaded CPython 3.8Windows x86

statsmodels-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

statsmodels-0.13.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

statsmodels-0.13.2-cp38-cp38-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

statsmodels-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

statsmodels-0.13.2-cp37-cp37m-win_amd64.whl (9.0 MB view details)

Uploaded CPython 3.7mWindows x86-64

statsmodels-0.13.2-cp37-cp37m-win32.whl (8.6 MB view details)

Uploaded CPython 3.7mWindows x86

statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

statsmodels-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file statsmodels-0.13.2.tar.gz.

File metadata

  • Download URL: statsmodels-0.13.2.tar.gz
  • Upload date:
  • Size: 17.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.27.1 setuptools/58.0.4 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2.tar.gz
Algorithm Hash digest
SHA256 77dc292c9939c036a476f1770f9d08976b05437daa229928da73231147cde7d4
MD5 08d926aef96b97615a88e77c2dbf7f69
BLAKE2b-256 e14a0eb4efa49cc352e2721e2aebfe8573264db2add195545ec3979c98040c3b

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 855b1cc2a91ab140b9bcf304b1731705805ce73223bf500b988804968554c0ed
MD5 5aa9335f4f2dfb2261c2ded9bfe2180b
BLAKE2b-256 b8ad820c01123f5b3d596965d5e5b274830d38bc39f93b11d76a3b53f86f45f1

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c4ccc6b4744613367e8a233bd952c8a838db8f528f9fe033bda25aa13fc7d08
MD5 4ab642c071dfe77afc426f8e4f314831
BLAKE2b-256 6a534e1fcc0d05638c0edfea18e1b09e16a2cd6ac930fe63e25d9806776c5ef0

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f15f38dfc9c5c091662cb619e12322047368c67aef449c7554d9b324a15f7a94
MD5 8db98073c7bdf980c8dd4c9ced6ea183
BLAKE2b-256 fe4c150b6f9d1699f94c79df1dea6888e991c2485d22be93cae4a94166ff0efb

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 066a75d5585378b2df972f81a90b9a3da5e567b7d4833300c1597438c1a35e29
MD5 a28b2e4dc2ccd3997de3e8c06ec4efd5
BLAKE2b-256 9ad7a58f9edc176f13da02e2a3b2467069f9f8a3ba960a72cbf4b228d3e378bd

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e7ca5b7e678c0bb7a24f5c735d58ac104a50eb61b17c484cce0e221a095560f
MD5 80984c171af6c35fda6526cd1c6152b2
BLAKE2b-256 7b88684887d7c57e1d51fcf6dc5b73f7eb1fde22602a9b588784e051760abb3f

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 39daab5a8a9332c8ea83d6464d065080c9ba65f236daf6a64aa18f64ef776fad
MD5 9fe99e0466d156b3005c263a1f2bfd9b
BLAKE2b-256 c373fec9fad97b97e879338f1e30fd1717d7a802ce702df8837649349440f2e6

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 461c82ab2265fa8457b96afc23ef3ca19f42eb070436e0241b57e58a38863901
MD5 0c2d0b4eed4cd40f57332c665e92ad1e
BLAKE2b-256 e9a4681afda4d75016edb34110fb33b26bab6370e27e5c547c59f55b3e3a04de

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 815f4df713e3eb6f40ae175c71f2a70d32f9219b5b4d23d4e0faab1171ba93ba
MD5 51d3a940dce09afe9cd817388427b3e1
BLAKE2b-256 46efbd00681d8e3e41ec5deaaa299b614e15f4fec339cbbb6a6cf07d8cf5ce30

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f23554dd025ea354ce072ba32bfaa840d2b856372e5734290e181d27a1f9e0c
MD5 b19bd05f29389a53b43d150fd5e3adb7
BLAKE2b-256 6a55f44210cfe27054551549c454c0bca2911a90015d0ea747f57bdc00206413

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a403b559c5586dab7ac0fc9e754c737b017c96cce0ddd66ff9094764cdaf293d
MD5 8850db15cc45eb67d9d9edcc6d96ceea
BLAKE2b-256 635deca1d91e72d271c1684d3fa8361133c0fc19211ab40e55e56fd1bf8c384c

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6bf0dfed5f5edb59b5922b295392cd276463b10a5e730f7e57ee4ff2d8e9a87e
MD5 8594b56b2a74f7d2dfb91abd153cd9ea
BLAKE2b-256 a3bcdaba2494dc61b84d5d91bce3dd40f042569d37b6c344e3dfab94ecd53d3f

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bf43051a92231ccb9de95e4b6d22d3b15e499ee5ee9bff0a20e6b6ad293e34cb
MD5 e587514be37f749fcdc24090f2e5f281
BLAKE2b-256 466c99b08cce86a80019ee0a2820d31e0b6831ea0866956c01d2ef90405676ec

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 20483cc30e11aa072b30d307bb80470f86a23ae8fffa51439ca54509d7aa9b05
MD5 4bbc10e979256af02c0ceb0a6e929b40
BLAKE2b-256 9aa916ac03cb6b87a135ae0512294e1b7d58944105b2e2c302f399063949d9b7

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78ee69ec0e0f79f627245c65f8a495b8581c2ea19084aac63941815feb15dcf3
MD5 ccb49b61d09f28f2296049c20ae5a4bc
BLAKE2b-256 9e3512b950eba46d6648b0d6e2e895ab0a3821f185e53a9568b86ded87f4efac

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45b80fac4a63308b1e93fa9dc27a8598930fd5dfd77c850ca077bb850254c6d7
MD5 e0b145f7a3fee164a6fc3e0ee04e3cdc
BLAKE2b-256 3304b0275d3a8c7894d98a9acd1b7829196b32bbbd1cde257313eaa7fbedc260

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 426b1c8ea3918d3d27dbfa38f2bee36cabf41d32163e2cbb3adfb0178b24626a
MD5 b991c1ba9a28598f76c195c0552ffbc7
BLAKE2b-256 4a8188ec62006b1a5ef308f60340dfba480b354ef8f028b2d25b29f2c00c93a4

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5bc050f25f1ba1221efef9ea01b751c60935ad787fcd4259f4ece986f2da9141
MD5 8b9d2656dce9af0d88b268d633f25ccd
BLAKE2b-256 f0ebfc5940beabd88202065efb31b328684aedb01464279380c434fa12826f80

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 9.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c9f6326870c095ef688f072cd476b932aff0906d60193eaa08e93ec23b29ca83
MD5 5e4d0556c96c24f560ddbb63017ca781
BLAKE2b-256 e9331e9c80d6c8ce9aac7228e155d098994536bf518891273638641d584b1a74

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9e9a3f661d372431850d55157d049e079493c97fc06f550d23d8c8c70805cc48
MD5 d4e4e0f0074a15b79ef9afe2f41682a2
BLAKE2b-256 21084a30efd23d2ec476ac442e603536d7e3e699797b087092a0eb3690e80e73

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d680b910b57fc0aa87472662cdfe09aae0e21db4bdf19ccd6420fd4dffda892
MD5 b16696e2d6340fdbbb09425ead5771b9
BLAKE2b-256 10f14ab3919264cf968fab32df2244e0132d5093d6e524135f5fb1aa481edbc7

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ab31bac0f72b83bca1f217a12ec6f309a56485a50c4a705fbdd63112213d4da4
MD5 d1aaad405a86b5934e0c28f32ef85a48
BLAKE2b-256 017a174c0c7ccc9490eb9817a5b29ef1b71f44fa7a61518acd8a34c35ce1886b

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b69c9af7606325095f7c40c581957bad9f28775653d41537c1ec4cd1b185ff5b
MD5 fbac7e459fd901ff89e7e79b16b0ac21
BLAKE2b-256 5ed3a8486555e1da06e3ef258ef7d2f0f0e2e2284bebeca424ab502a6814b84f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page