Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue.svg

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the forum or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.16.0.tar.gz (30.6 MB view details)

Uploaded Source

Built Distributions

scipy-1.16.0-cp313-cp313t-win_amd64.whl (38.5 MB view details)

Uploaded CPython 3.13tWindows x86-64

scipy-1.16.0-cp313-cp313t-musllinux_1_2_x86_64.whl (38.0 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

scipy-1.16.0-cp313-cp313t-musllinux_1_2_aarch64.whl (35.6 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

scipy-1.16.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (35.2 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ x86-64

scipy-1.16.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (33.3 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ARM64

scipy-1.16.0-cp313-cp313t-macosx_14_0_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.13tmacOS 14.0+ x86-64

scipy-1.16.0-cp313-cp313t-macosx_14_0_arm64.whl (21.2 MB view details)

Uploaded CPython 3.13tmacOS 14.0+ ARM64

scipy-1.16.0-cp313-cp313t-macosx_12_0_arm64.whl (29.0 MB view details)

Uploaded CPython 3.13tmacOS 12.0+ ARM64

scipy-1.16.0-cp313-cp313t-macosx_10_14_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.13tmacOS 10.14+ x86-64

scipy-1.16.0-cp313-cp313-win_amd64.whl (38.4 MB view details)

Uploaded CPython 3.13Windows x86-64

scipy-1.16.0-cp313-cp313-musllinux_1_2_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

scipy-1.16.0-cp313-cp313-musllinux_1_2_aarch64.whl (35.4 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

scipy-1.16.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

scipy-1.16.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (33.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

scipy-1.16.0-cp313-cp313-macosx_14_0_x86_64.whl (23.4 MB view details)

Uploaded CPython 3.13macOS 14.0+ x86-64

scipy-1.16.0-cp313-cp313-macosx_14_0_arm64.whl (20.7 MB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

scipy-1.16.0-cp313-cp313-macosx_12_0_arm64.whl (28.5 MB view details)

Uploaded CPython 3.13macOS 12.0+ ARM64

scipy-1.16.0-cp313-cp313-macosx_10_14_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.13macOS 10.14+ x86-64

scipy-1.16.0-cp312-cp312-win_amd64.whl (38.4 MB view details)

Uploaded CPython 3.12Windows x86-64

scipy-1.16.0-cp312-cp312-musllinux_1_2_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

scipy-1.16.0-cp312-cp312-musllinux_1_2_aarch64.whl (35.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

scipy-1.16.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

scipy-1.16.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (33.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

scipy-1.16.0-cp312-cp312-macosx_14_0_x86_64.whl (23.4 MB view details)

Uploaded CPython 3.12macOS 14.0+ x86-64

scipy-1.16.0-cp312-cp312-macosx_14_0_arm64.whl (20.8 MB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

scipy-1.16.0-cp312-cp312-macosx_12_0_arm64.whl (28.5 MB view details)

Uploaded CPython 3.12macOS 12.0+ ARM64

scipy-1.16.0-cp312-cp312-macosx_10_14_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.12macOS 10.14+ x86-64

scipy-1.16.0-cp311-cp311-win_amd64.whl (38.6 MB view details)

Uploaded CPython 3.11Windows x86-64

scipy-1.16.0-cp311-cp311-musllinux_1_2_x86_64.whl (38.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

scipy-1.16.0-cp311-cp311-musllinux_1_2_aarch64.whl (35.6 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

scipy-1.16.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (35.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

scipy-1.16.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (33.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

scipy-1.16.0-cp311-cp311-macosx_14_0_x86_64.whl (23.4 MB view details)

Uploaded CPython 3.11macOS 14.0+ x86-64

scipy-1.16.0-cp311-cp311-macosx_14_0_arm64.whl (20.8 MB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

scipy-1.16.0-cp311-cp311-macosx_12_0_arm64.whl (28.5 MB view details)

Uploaded CPython 3.11macOS 12.0+ ARM64

scipy-1.16.0-cp311-cp311-macosx_10_14_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.11macOS 10.14+ x86-64

File details

Details for the file scipy-1.16.0.tar.gz.

File metadata

  • Download URL: scipy-1.16.0.tar.gz
  • Upload date:
  • Size: 30.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for scipy-1.16.0.tar.gz
Algorithm Hash digest
SHA256 b5ef54021e832869c8cfb03bc3bf20366cbcd426e02a58e8a58d7584dfbb8f62
MD5 4fccfec90ae370328e8a5fd2e0498bbd
BLAKE2b-256 8118b06a83f0c5ee8cddbde5e3f3d0bb9b702abfa5136ef6d4620ff67df7eee5

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: scipy-1.16.0-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 38.5 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for scipy-1.16.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 f56296fefca67ba605fd74d12f7bd23636267731a72cb3947963e76b8c0a25db
MD5 fd4250f27e3ee78e920ffcdeb3977d45
BLAKE2b-256 ebc4231cac7a8385394ebbbb4f1ca662203e9d8c332825ab4f36ffc3ead09a42

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 aad603e9339ddb676409b104c48a027e9916ce0d2838830691f39552b38a352e
MD5 60edb19bca19fb3d90f01075b3ce2ddd
BLAKE2b-256 e5d37ba42647d6709251cdf97043d0c107e0317e152fa2f76873b656b509ff55

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4f720300a3024c237ace1cb11f9a84c38beb19616ba7c4cdcd771047a10a1706
MD5 862fb986258ff74feb11fd855d870e5d
BLAKE2b-256 ceb321001cff985a122ba434c33f2c9d7d1dc3b669827e94f4fc4e1fe8b9dfd8

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e85800274edf4db8dd2e4e93034f92d1b05c9421220e7ded9988b16976f849c1
MD5 b1cee2cbb534b0b85880f03e4be7ed1d
BLAKE2b-256 3fdc9e496a3c5dbe24e76ee24525155ab7f659c20180bab058ef2c5fa7d9119c

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 de2db7250ff6514366a9709c2cba35cb6d08498e961cba20d7cff98a7ee88938
MD5 250fdd16f6ba2853ad6011b238245ced
BLAKE2b-256 4c4f9efbd3f70baf9582edf271db3002b7882c875ddd37dc97f0f675ad68679f

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 8cb824c1fc75ef29893bc32b3ddd7b11cf9ab13c1127fe26413a05953b8c32ed
MD5 c7a76aad0fa4e154933fa234047f33a9
BLAKE2b-256 8c4807b97d167e0d6a324bfd7484cd0c209cc27338b67e5deadae578cf48e809

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 ae902626972f1bd7e4e86f58fd72322d7f4ec7b0cfc17b15d4b7006efc385176
MD5 d454a18f60b1dae1bc7b8411b4ae8937
BLAKE2b-256 8afce18b8550048d9224426e76906694c60028dbdb65d28b1372b5503914b89d

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313t-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313t-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 88a6ca658fb94640079e7a50b2ad3b67e33ef0f40e70bdb7dc22017dae73ac08
MD5 cb62bd360be7d0231edb138833d926d1
BLAKE2b-256 28f4197580c3dac2d234e948806e164601c2df6f0078ed9f5ad4a62685b7c331

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313t-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313t-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f91b87e1689f0370690e8470916fe1b2308e5b2061317ff76977c8f836452a47
MD5 75e289e4e696c01c13400a73894ea461
BLAKE2b-256 4720965da8497f6226e8fa90ad3447b82ed0e28d942532e92dd8b91b43f100d4

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: scipy-1.16.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 38.4 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for scipy-1.16.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 79a3c13d43c95aa80b87328a46031cf52508cf5f4df2767602c984ed1d3c6bbe
MD5 d494778bdea81c98b0946946a55557cc
BLAKE2b-256 7ca74c94bbe91f12126b8bf6709b2471900577b7373a4fd1f431f28ba6f81115

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d2b83c37edbfa837a8923d19c749c1935ad3d41cf196006a24ed44dba2ec4358
MD5 bb450ef1a3c26d0b77bd22f3ed0ca7b2
BLAKE2b-256 579ed6fc64e41fad5d481c029ee5a49eefc17f0b8071d636a02ceee44d4a0de2

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 eb9f147a1b8529bb7fec2a85cf4cf42bdfadf9e83535c309a11fdae598c88e8b
MD5 91221977f67a7c85a0fc35eaff6b2ee3
BLAKE2b-256 20abeb0fc00e1e48961f1bd69b7ad7e7266896fe5bad4ead91b5fc6b3561bba4

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1d8747f7736accd39289943f7fe53a8333be7f15a82eea08e4afe47d79568c32
MD5 09da38eb9872006d05d4fa489a27adc2
BLAKE2b-256 116b3443abcd0707d52e48eb315e33cc669a95e29fc102229919646f5a501171

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 6b65d232157a380fdd11a560e7e21cde34fdb69d65c09cb87f6cc024ee376351
MD5 cc3443bb8de103d321d32a831e782c31
BLAKE2b-256 ca80a561f2bf4c2da89fa631b3cbf31d120e21ea95db71fd9ec00cb0247c7a93

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 75b2094ec975c80efc273567436e16bb794660509c12c6a31eb5c195cbf4b6dc
MD5 6ae7e63b5c3690ab6acbce0ee1a9126b
BLAKE2b-256 93860fbb5588b73555e40f9d3d6dde24ee6fac7d8e301a27f6f0cab9d8f66ff2

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 58e0d4354eacb6004e7aa1cd350e5514bd0270acaa8d5b36c0627bb3bb486974
MD5 41d542cf0d89fbf43fb92fc921a71783
BLAKE2b-256 584663477fc1246063855969cbefdcee8c648ba4b17f67370bd542ba56368d0b

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 bbba55fb97ba3cdef9b1ee973f06b09d518c0c7c66a009c729c7d1592be1935e
MD5 28944775758ae14a72cdfe759774f75e
BLAKE2b-256 195a914355a74481b8e4bbccf67259bbde171348a3f160b67b4945fbc5f5c1e5

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp313-cp313-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp313-cp313-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e9f414cbe9ca289a73e0cc92e33a6a791469b6619c240aa32ee18abdce8ab451
MD5 224555cce57d72942c4cb87b2ceb145a
BLAKE2b-256 46950746417bc24be0c2a7b7563946d61f670a3b491b76adede420e9d173841f

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: scipy-1.16.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 38.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for scipy-1.16.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 adf9b1999323ba335adc5d1dc7add4781cb5a4b0ef1e98b79768c05c796c4e49
MD5 91f284fc0946b11325a46f5d38be57cc
BLAKE2b-256 eab529fece1a74c6a94247f8a6fb93f5b28b533338e9c34fdcc9cfe7a939a767

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e69f798847e9add03d512eaf5081a9a5c9a98757d12e52e6186ed9681247a1ac
MD5 95a3d69b7aab384108b7d33924833f04
BLAKE2b-256 86e8a60da80ab9ed68b31ea5a9c6dfd3c2f199347429f229bf7f939a90d96383

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 512c4f4f85912767c351a0306824ccca6fd91307a9f4318efe8fdbd9d30562ef
MD5 7a02205011aec674bcdd7efe2f4718e2
BLAKE2b-256 e5735cbe4a3fd4bc3e2d67ffad02c88b83edc88f381b73ab982f48f3df1a7790

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 03931b4e870c6fef5b5c0970d52c9f6ddd8c8d3e934a98f09308377eba6f3824
MD5 c2e11467ea84ae908323314acbcf1765
BLAKE2b-256 6df0b6ac354a956384fd8abee2debbb624648125b298f2c4a7b4f0d6248048a5

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 952358b7e58bd3197cfbd2f2f2ba829f258404bdf5db59514b515a8fe7a36c52
MD5 d66aa10db9d237def797ddf573aeda5b
BLAKE2b-256 f6f1e4f4324fef7f54160ab749efbab6a4bf43678a9eb2e9817ed71a0a2fd8de

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 26ec28675f4a9d41587266084c626b02899db373717d9312fa96ab17ca1ae94d
MD5 2be5e1fc22c159e46ed1d5fe53dfcbca
BLAKE2b-256 347f87fd69856569ccdd2a5873fe5d7b5bbf2ad9289d7311d6a3605ebde3a94b

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 7dcf42c380e1e3737b343dec21095c9a9ad3f9cbe06f9c05830b44b1786c9e90
MD5 f307cbf109616ffef7859a62afdd0fe0
BLAKE2b-256 1c2201d7ddb07cff937d4326198ec8d10831367a708c3da72dfd9b7ceaf13028

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 1dbc8fdba23e4d80394ddfab7a56808e3e6489176d559c6c71935b11a2d59db1
MD5 028c48650f6487a7a0e76f2ad9de6e71
BLAKE2b-256 990d270e2e9f1a4db6ffbf84c9a0b648499842046e4e0d9b2275d150711b3aba

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7eb6bd33cef4afb9fa5f1fb25df8feeb1e52d94f21a44f1d17805b41b1da3180
MD5 e7ca6334a2ac95810fad171ecc70589d
BLAKE2b-256 01c0c943bc8d2bbd28123ad0f4f1eef62525fa1723e84d136b32965dcb6bad3a

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.16.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 38.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for scipy-1.16.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a16ba90847249bedce8aa404a83fb8334b825ec4a8e742ce6012a7a5e639f95c
MD5 2544295d4b9fce9f8852e6f1d35e66dd
BLAKE2b-256 8bc9750d34788288d64ffbc94fdb4562f40f609d3f5ef27ab4f3a4ad00c9033e

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b370f8f6ac6ef99815b0d5c9f02e7ade77b33007d74802efc8316c8db98fd11e
MD5 0ed7fd05b4765c5fb1ba8e0c97508621
BLAKE2b-256 c8ff950ee3e0d612b375110d8cda211c1f787764b4c75e418a4b71f4a5b1e07f

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6c4abb4c11fc0b857474241b812ce69ffa6464b4bd8f4ecb786cf240367a36a7
MD5 7acd2735345d2c28a1be9f37c44e611f
BLAKE2b-256 d330e9eb0ad3d0858df35d6c703cba0a7e16a18a56a9e6b211d861fc6f261c5f

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 a2f0bf2f58031c8701a8b601df41701d2a7be17c7ffac0a4816aeba89c4cdac8
MD5 e4b2012a4e37d1f81886f38db2007efa
BLAKE2b-256 af2c40108915fd340c830aee332bb85a9160f99e90893e58008b659b9f3dddc0

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 90452f6a9f3fe5a2cf3748e7be14f9cc7d9b124dce19667b54f5b429d680d539
MD5 0d06721b6d61611148bb72ff46204f86
BLAKE2b-256 5b61d92714489c511d3ffd6830ac0eb7f74f243679119eed8b9048e56b9525a1

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e6d7dfc148135e9712d87c5f7e4f2ddc1304d1582cb3a7d698bbadedb61c7afd
MD5 229c5843280ddc434931437fd49cab7b
BLAKE2b-256 cde0cf3f39e399ac83fd0f3ba81ccc5438baba7cfe02176be0da55ff3396f126

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 b2243561b45257f7391d0f49972fca90d46b79b8dbcb9b2cb0f9df928d370ad4
MD5 5b8e329a3a6a0b83420682db54387ecc
BLAKE2b-256 8dbed324ddf6b89fd1c32fecc307f04d095ce84abb52d2e88fab29d0cd8dc7a8

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d30c0fe579bb901c61ab4bb7f3eeb7281f0d4c4a7b52dbf563c89da4fd2949be
MD5 130aed64bc5c71eb4c5c50ee517a1f36
BLAKE2b-256 c925fad8aa228fa828705142a275fc593d701b1817c98361a2d6b526167d07bc

See more details on using hashes here.

File details

Details for the file scipy-1.16.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 deec06d831b8f6b5fb0b652433be6a09db29e996368ce5911faf673e78d20085
MD5 18bc1c5d5532042c6332c5ca8937953d
BLAKE2b-256 d9f853fc4884df6b88afd5f5f00240bdc49fee2999c7eff3acf5953eb15bc6f8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page