Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Dependencies

malss requires:

  • python (>= 3.6)
  • numpy (>= 1.10.2)
  • scipy (>= 0.16.1)
  • scikit-learn (>= 0.19)
  • matplotlib (>= 1.5.1)
  • pandas (>= 0.14.1)
  • jinja2 (>= 2.8)
  • PyQt5 (>= 5.12) (only for interactive mode)

All modules except PyQt5 are automatically installed when installing malss.

Installation

pip install malss

For interactive mode, you need to install PyQt5 using pip.

pip install PyQt5

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS(task='classification', lang='en')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS(task='regression', lang='en')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier as RF
iris = load_iris()
clf = MALSS(task='classification', lang='en')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)  # remove the first algorithm
# add random forest classifier
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Interactive mode:

In the interactive mode, you can interactively analyze data through a GUI.

from malss import MALSS

MALSS(lang='en', interactive=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for malss, version 2.2.6
Filename, size File type Python version Upload date Hashes
Filename, size malss-2.2.6-py2.py3-none-any.whl (1.2 MB) File type Wheel Python version py2.py3 Upload date Hashes View hashes
Filename, size malss-2.2.6.tar.gz (62.9 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page