Skip to main content

MALSS: MAchine Learning Support System

Project description

MAchine Learning Support System ###############################

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms <http://scikit-learn.org/stable/supervised_learning.html>_ and the other scikit-learn-compatible algorithms.

.. image:: https://travis-ci.org/canard0328/malss.svg?branch=master :target: https://travis-ci.org/canard0328/malss

Dependencies


malss requires:

  • python (>= 3.9)
  • numpy (>= 1.21.2)
  • scipy (>= 1.7.1)
  • scikit-learn (>= 1.1.1)
  • matplotlib (>= 3.4.3)
  • pandas (>= 1.3.3)
  • jinja2 (>= 3.1.2)

.. * PyQt5 (== 5.10) (only for interactive mode)

All modules except PyQt5 are automatically installed when installing malss.

Installation


pip install malss

For interactive mode, you need to install PyQt5 using pip.

pip install PyQt5

Example


Supervised learning

Classification:

.. code-block:: python

from malss import MALSS from sklearn.datasets import load_iris iris = load_iris() model = MALSS(task='classification', lang='en') model.fit(iris.data, iris.target, 'classification_result') model.generate_module_sample('classification_module_sample.py')

Regression:

.. code-block:: python

from malss import MALSS from sklearn.datasets import load_boston boston = load_boston() model = MALSS(task='regression', lang='en') model.fit(boston.data, boston.target, 'regression_result') model.generate_module_sample('regression_module_sample.py')

Change algorithm:

.. code-block:: python

from malss import MALSS from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier as RF iris = load_iris() model = MALSS(task='classification', lang='en') model.fit(iris.data, iris.target, algorithm_selection_only=True) algorithms = model.get_algorithms()

check algorithms here

model.remove_algorithm(0) # remove the first algorithm

add random forest classifier

model.add_algorithm(RF(n_jobs=3), [{'n_estimators': [10, 30, 50], 'max_depth': [3, 5, None], 'max_features': [0.3, 0.6, 'auto']}], 'Random Forest') model.fit(iris.data, iris.target, 'classification_result') model.generate_module_sample('classification_module_sample.py')

Feature selection:

.. code-block:: python

from malss import MALSS from sklearn.datasets import make_friedman1 X, y = make_friedman1(n_samples=1000, n_features=20, noise=0.0, random_state=0) model = MALSS(task='regression', lang='en') model.fit(X, y, dname='default')

check the analysis report

model.select_features() model.fit(X, y, dname='feature_selection')

You can set the original data after feature selection

(You do not need to select features by yourself.)

.. Interactive mode:

In the interactive mode, you can interactively analyze data through a GUI.

.. code-block:: python

from malss import MALSS

MALSS(lang='en', interactive=True)

Unsupervised learning

Clustering:

.. code-block:: python

from malss import MALSS from sklearn.datasets import load_iris

iris = load_iris() model = MALSS(task='clustering', lang='en') model.fit(iris.data, None, 'clustering_result') pred_dict = model.predict(iris.data)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

malss-2.4.2.tar.gz (74.6 kB view details)

Uploaded Source

Built Distribution

malss-2.4.2-py2.py3-none-any.whl (1.3 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file malss-2.4.2.tar.gz.

File metadata

  • Download URL: malss-2.4.2.tar.gz
  • Upload date:
  • Size: 74.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for malss-2.4.2.tar.gz
Algorithm Hash digest
SHA256 27368f0b22d7f96a82e9764185b15aafde41e6d6960892bfd013c24511fd91e3
MD5 1a91be1b7d49bb15e51d717055c5c184
BLAKE2b-256 37832cad0d952f4bf9f1353f24c5abf411d507f22ee9ff8b16122afcacd5c0f4

See more details on using hashes here.

File details

Details for the file malss-2.4.2-py2.py3-none-any.whl.

File metadata

  • Download URL: malss-2.4.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for malss-2.4.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f3ca47fea5da992260594117e1270c36159d3ca9d56ea50d4c8dbd6e3df0dbd7
MD5 1cf6bc4cfa79dda66c5fd13ccca6ba96
BLAKE2b-256 e0713217c7f9c14ec88d5b565ad477cde2d1e0916a1cfab24e580fa9365bd3e5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page