Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

MALSS: MAchine Learning Support System

Project Description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7 or >= 3.4)
  • numpy (>= 1.10.2)
  • scipy (>= 0.16.1)
  • scikit-learn (>= 0.18)
  • matplotlib (>= 1.5.1)
  • pandas (>= 0.14.1)
  • jinja2 (>= 2.8)

I highly recommend Anaconda. Anaconda conveniently installs packages listed above.

Installation

If you already have a working installation of numpy and scipy:

pip install malss

If you have not installed numpy or scipy yet, you can also install these using pip.

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier as RF
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

API

View the documentation here.

Release History

Release History

This version
History Node

1.1.2

History Node

1.1.1

History Node

1.1.0

History Node

1.0.4

History Node

1.0.3

History Node

1.0.2

History Node

1.0.1

History Node

1.0.0

History Node

0.5.1

History Node

0.5.0

History Node

0.4.10

History Node

0.4.9

History Node

0.4.8

History Node

0.4.7

History Node

0.4.6

History Node

0.4.5

History Node

0.4.4

History Node

0.4.2

History Node

0.4.1

History Node

0.3.2

History Node

0.3.1

History Node

0.2.6

History Node

0.2.5

History Node

0.2.4

History Node

0.2.3

History Node

0.2.2

History Node

0.2.1

History Node

0.2.0

History Node

0.1.2

History Node

0.1.1

History Node

0.1.0

History Node

0.0.3

History Node

0.0.2

History Node

0.0.1

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
malss-1.1.2-py2.py3-none-any.whl (22.0 kB) Copy SHA256 Checksum SHA256 3.5 Wheel May 28, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting