Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Dependencies

malss requires:

  • python (>= 3.6)

  • numpy (>= 1.10.2)

  • scipy (>= 0.16.1)

  • scikit-learn (>= 0.20)

  • matplotlib (>= 1.5.1)

  • pandas (>= 0.14.1)

  • jinja2 (>= 2.8)

  • PyQt5 (>= 5.12) (only for interactive mode)

All modules except PyQt5 are automatically installed when installing malss.

Installation

pip install malss

For interactive mode, you need to install PyQt5 using pip.

pip install PyQt5

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS(task='classification', lang='en')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS(task='regression', lang='en')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier as RF
iris = load_iris()
clf = MALSS(task='classification', lang='en')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)  # remove the first algorithm
# add random forest classifier
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Interactive mode:

In the interactive mode, you can interactively analyze data through a GUI.

from malss import MALSS

MALSS(lang='en', interactive=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

malss-2.3.0.tar.gz (68.9 kB view details)

Uploaded Source

Built Distribution

malss-2.3.0-py2.py3-none-any.whl (1.2 MB view details)

Uploaded Python 2Python 3

File details

Details for the file malss-2.3.0.tar.gz.

File metadata

  • Download URL: malss-2.3.0.tar.gz
  • Upload date:
  • Size: 68.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/28.8.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.3

File hashes

Hashes for malss-2.3.0.tar.gz
Algorithm Hash digest
SHA256 52b9900e3a1d7dc7771541bdeeee5f1488c65eabbdb913ad959b228e5a57ee50
MD5 71d51742bb150112c0033d3530e7ad57
BLAKE2b-256 ef2da757a7f8d75c5b85b6e9281fb4eca110940c085c7e0b77ffb013fd7dbf6f

See more details on using hashes here.

File details

Details for the file malss-2.3.0-py2.py3-none-any.whl.

File metadata

  • Download URL: malss-2.3.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/28.8.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.3

File hashes

Hashes for malss-2.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b61a0de150e6151c516f3d90fcabf1df9dbe6347d667f701a7b6c77f1ac25e3d
MD5 aa9bf2d857814d8837e7db607e2ef348
BLAKE2b-256 9fa4fdeeb0ab39dd7fb9df5835cb257e6567a12f1318f894f4283abab6770c40

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page