Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Note scikit-learn was previously referred to as scikits.learn.

Dependencies

scikit-learn is tested to work under Python 2.6, Python 2.7, and Python 3.4. (using the same codebase thanks to an embedded copy of six). It should also work with Python 3.3.

The required dependencies to build the software are NumPy >= 1.6.2, SciPy >= 0.9 and a working C/C++ compiler.

For running the examples Matplotlib >= 1.1.1 is required and for running the tests you need nose >= 1.1.2.

This configuration matches the Ubuntu Precise 12.04 LTS release from April 2012.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

Install

This package uses distutils, which is the default way of installing python modules. To install in your home directory, use:

python setup.py install --user

To install for all users on Unix/Linux:

python setup.py build
sudo python setup.py install

Development

Code

GIT

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

or if you have write privileges:

git clone git@github.com:scikit-learn/scikit-learn.git

Contributing

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

$ nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/install.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.15.2.tar.gz (7.0 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_learn-0.15.2-cp34-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.4Windows x86-64

scikit_learn-0.15.2-cp34-none-win32.whl (2.6 MB view details)

Uploaded CPython 3.4Windows x86

scikit_learn-0.15.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.15.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.3mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.15.2-cp27-none-win_amd64.whl (2.9 MB view details)

Uploaded CPython 2.7Windows x86-64

scikit_learn-0.15.2-cp27-none-win32.whl (2.7 MB view details)

Uploaded CPython 2.7Windows x86

scikit_learn-0.15.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.1 MB view details)

Uploaded CPython 2.7macOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit-learn-0.15.2.win-amd64-py3.4.exe (3.0 MB view details)

Uploaded Source

scikit-learn-0.15.2.win-amd64-py2.7.exe (3.1 MB view details)

Uploaded Source

scikit-learn-0.15.2.win32-py3.4.exe (2.8 MB view details)

Uploaded Source

scikit-learn-0.15.2.win32-py2.7.exe (2.9 MB view details)

Uploaded Source

File details

Details for the file scikit-learn-0.15.2.tar.gz.

File metadata

  • Download URL: scikit-learn-0.15.2.tar.gz
  • Upload date:
  • Size: 7.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scikit-learn-0.15.2.tar.gz
Algorithm Hash digest
SHA256 1a8a881f6f13edc0ac58931ce21f899eb7920af50aa08802413d1239e2aa5fa6
MD5 d9822ad0238e17b382a3c756ea94fe0d
BLAKE2b-256 661aca01adae875224457bbfcd2755424c6cd5bfffe0a1bcb34e5bd349c9e347

See more details on using hashes here.

File details

Details for the file scikit_learn-0.15.2-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.2-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 8c56e565eddc93d50dc887290fb7cc3726eefb18af3fdcbd9ab8d9f39eba0e91
MD5 67b0bb3225a473e406104e502dc4440e
BLAKE2b-256 9b52df80f79ecc03aff6efa999dd7979797d890743fb2bf86a6efd0a56159cc7

See more details on using hashes here.

File details

Details for the file scikit_learn-0.15.2-cp34-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.2-cp34-none-win32.whl
Algorithm Hash digest
SHA256 6b46372e4eb53d98f876e7be4443d52710ec491edf1ff553de6c5f763d406849
MD5 40552c03c3aed7910d03b5801fbb3f26
BLAKE2b-256 90b34f706ed6a6937529f46d65ff933c56ffc503f729bc414f02ac9f52ae090a

See more details on using hashes here.

File details

Details for the file scikit_learn-0.15.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 77e13692c419a56fd2f66a56c3b15393f7b1618115f68e023a53751a0d0e6cc7
MD5 f3fd9686d8ba5cab3188177d6a7c8128
BLAKE2b-256 2eb10d3a49ec0d7d199e65fe3ef6b1c3c8de3343bf3da8c52d70865e13099b23

See more details on using hashes here.

File details

Details for the file scikit_learn-0.15.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d711fcbd56d85dfd2799b2fc88d2368bd0a998cb23558adf965605ecb891dd8d
MD5 b943f8e0086d5a73fa956c0890113625
BLAKE2b-256 ca5edf9b08dc481b811b4017ffb1dfe9cb6eb5ba792c83faa4d08c0a294f9d34

See more details on using hashes here.

File details

Details for the file scikit_learn-0.15.2-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.2-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 43a5bd96ab8e5c09a40ff482dddeb71fd850faffc77ab056d6a8e5619bdc1598
MD5 f40eee218b45a2c3058acd60ccfeda0c
BLAKE2b-256 f48d8d522f630105cb22741b4654524a106a6f124fec0ff5567f02b1764d560f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.15.2-cp27-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.2-cp27-none-win32.whl
Algorithm Hash digest
SHA256 a3eb188fbd9ef4ceba5c6fe37b2b92d5f301d718fc7c58635ed9c08a092e550d
MD5 554e8292cc4bf241709b65aaaaf3eb07
BLAKE2b-256 f2f1c46bf61cea162001b8b8a17b7f7fdf67ee4c4379eddad641fc935f143783

See more details on using hashes here.

File details

Details for the file scikit_learn-0.15.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a04953d6b7f9d4442e1e0a5232638330f2b0575c5a04ea186d8a3e99c8be8f93
MD5 64552d8b397eec6ca48f088d202f54c7
BLAKE2b-256 f09224f55458476fee22996cec14696fc66d9152d4387a6d86f81026b25c20b5

See more details on using hashes here.

File details

Details for the file scikit-learn-0.15.2.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.2.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 b8fd3f46cac67b7bf2b5ec9465d88e26cae9e1983fdda4b0c4adabe01031da56
MD5 98dd7e0ae801f5e6f0a4c8698552b30f
BLAKE2b-256 9acb72e4650eb3838d794cb4a6ca6f4641f5423c25970a05a38351a583211b37

See more details on using hashes here.

File details

Details for the file scikit-learn-0.15.2.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.2.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 a04901dc20876ce35046dce97f35d530549784dcc5f653d7733a1356c697cf03
MD5 81ff82a9233cc44ddbd3789947dcee40
BLAKE2b-256 48edf42a88b6496119314356c72e7d860f67c192534e9af8c1a940a8743bcbf6

See more details on using hashes here.

File details

Details for the file scikit-learn-0.15.2.win32-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.2.win32-py3.4.exe
Algorithm Hash digest
SHA256 80c2df89ec0dba5eb3bf668fb62216686e9c77567d2ab922fdb8ef0ae7b3a075
MD5 fa4ec799eafb6fd7486aeec62b5e8482
BLAKE2b-256 5730bc91458d8cbf15c23994b1695ce2b38655dad4cf612ff8dcaaf83992b04a

See more details on using hashes here.

File details

Details for the file scikit-learn-0.15.2.win32-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.2.win32-py2.7.exe
Algorithm Hash digest
SHA256 834af70a8dfac07c5c71859fae2773bd55a1b7a62bf60f7817848f1d5b9d27d9
MD5 62481e598def1c7ed3db9424b6faa81e
BLAKE2b-256 0a4b619a13ff23b230637a09c2f0f294f337fb551d1f3e94276a13fc43dece97

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page