Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis AppVeyor Codecov CircleCI Python27 Python35 PyPi DOI

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 2.7 or >= 3.3)

  • NumPy (>= 1.8.2)

  • SciPy (>= 0.13.3)

For running the examples Matplotlib >= 1.1.1 is required.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

The documentation includes more detailed installation instructions.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Setting up a development environment

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: http://scikit-learn.org/stable/about.html#citing-scikit-learn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.19.1.tar.gz (9.5 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.19.1-cp36-cp36m-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

scikit_learn-0.19.1-cp36-cp36m-win32.whl (3.9 MB view details)

Uploaded CPython 3.6m Windows x86

scikit_learn-0.19.1-cp36-cp36m-manylinux1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.19.1-cp36-cp36m-manylinux1_i686.whl (11.6 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.19.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.19.1-cp35-cp35m-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.5m Windows x86-64

scikit_learn-0.19.1-cp35-cp35m-win32.whl (3.9 MB view details)

Uploaded CPython 3.5m Windows x86

scikit_learn-0.19.1-cp35-cp35m-manylinux1_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.19.1-cp35-cp35m-manylinux1_i686.whl (11.4 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.19.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.19.1-cp34-cp34m-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.4m Windows x86-64

scikit_learn-0.19.1-cp34-cp34m-win32.whl (4.0 MB view details)

Uploaded CPython 3.4m Windows x86

scikit_learn-0.19.1-cp34-cp34m-manylinux1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.19.1-cp34-cp34m-manylinux1_i686.whl (11.6 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.19.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.19.1-cp27-cp27mu-manylinux1_x86_64.whl (12.2 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.19.1-cp27-cp27mu-manylinux1_i686.whl (11.4 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.19.1-cp27-cp27m-win_amd64.whl (4.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

scikit_learn-0.19.1-cp27-cp27m-win32.whl (4.1 MB view details)

Uploaded CPython 2.7m Windows x86

scikit_learn-0.19.1-cp27-cp27m-manylinux1_x86_64.whl (12.2 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.19.1-cp27-cp27m-manylinux1_i686.whl (11.4 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.19.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (8.0 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit-learn-0.19.1.win-amd64-py3.5.exe (4.9 MB view details)

Uploaded Source

scikit-learn-0.19.1.win-amd64-py2.7.exe (4.7 MB view details)

Uploaded Source

scikit-learn-0.19.1.win32-py3.5.exe (4.4 MB view details)

Uploaded Source

scikit-learn-0.19.1.win32-py2.7.exe (4.3 MB view details)

Uploaded Source

File details

Details for the file scikit-learn-0.19.1.tar.gz.

File metadata

File hashes

Hashes for scikit-learn-0.19.1.tar.gz
Algorithm Hash digest
SHA256 5ca0ad32ee04abe0d4ba02c8d89d501b4e5e0304bdf4d45c2e9875a735b323a0
MD5 b67143988c108862735a96cf2b1e827a
BLAKE2b-256 f52c5edf2488897cad4fb8c4ace86369833552615bf264460ae4ef6e1f258982

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ddc1eb10138ae93c136cc4b5945d3977f302b5d693592a4731b2805a7d7f2a74
MD5 21e4f0e68cd6a3ba66629a66c64f6a68
BLAKE2b-256 67e51459a3d6c6029a86b840b7701c48429d857eb2086916fec76f97c94dcc7a

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 13136c6e4f6b808569f7f59299d439b2cd718f85d72ea14b5b6077d44ebc7d17
MD5 34aae25b9d4550297073d12222fea6a9
BLAKE2b-256 87b70e7f5c0cf765cf4e1924c068e7b2e1708c93ebffde9302a57ea8f26619e9

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8b17fc29554c5c98d88142f895516a5bec2b6b61daa815e1193a64c868ad53d2
MD5 1e1f6c9e41f236902dc658fb91b6ed02
BLAKE2b-256 3d2d9fbc7baa5f44bc9e88ffb7ed32721b879bfa416573e85031e16f52569bc9

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5db9e68a384ce80a17fc449d4d5d9b45025fe17cf468429599bf404eccb51049
MD5 dd1ad60f6104a9b860c8f8a3ceba0abf
BLAKE2b-256 615e2912116974cefae697bbb8c7f8271e096f7314d2f420a9042374d55250ef

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 56cfa19c31edf62e6414da0a337efee37a4af488b135640e67238786b9be6ab3
MD5 240ad2ad6fda91a6a9be0ed01c71b701
BLAKE2b-256 f05e1e1576587c5a9e8de6771806a4cccea8decd268c988453cf35ccbf892929

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 ee8c3b1898c728b6e5b5659c233f547700a1fea13ce876b6fe7d3434c70cc0e0
MD5 a955c2ec27ea9e3b0dffef560d0e671b
BLAKE2b-256 2129101a3e98bcc56d6b8e63d42a1281a2fff0461bb42f670ba4dbdba65aa4ec

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 d384e6f9a055b7a43492f9d27779adb717eb5dcf78b0603b01d0f070a608d241
MD5 d0be9b158927c9bfbd1b6c26faa6d2e5
BLAKE2b-256 b9e806a0f3af461824d98e6e8fd905102aaa196424853aed097e50b9fac18202

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f528c4b2bba652cf116f5cccf36f4db95a7f9cbfcd1ee549c4e8d0f8628783b5
MD5 372f795aabeee577770edda53bbd2e63
BLAKE2b-256 bf538c9c950a3cfaec16069df196c0b76ab05b3d1f0527f6bb97a30f4dda5240

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 72c194c5092e921d6107a8de8a5adae58c35bbc54e030ba624b6f02fd823bb21
MD5 ee044b1bb8439cf8095fb7542a01887e
BLAKE2b-256 2d017cb9a0a6a0d17fecb2a9b299e4ddd399cdc16246441d5ef46a3c8350e7bf

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 95b155ef6bf829ddfba6026f100ba8e4218b7171ecab97b2163bc9e8d206848f
MD5 3e0bef482c6531fc05955e0ab64acff9
BLAKE2b-256 5f14e1fa556619b2c9c5b9a121c6dad04277675897c870e51f68c2c25bfa197b

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 42f3c5bd893ed73bf47ccccf04dfb98fae743f397d688bb58c2238c0e6ec15d2
MD5 715bd90b9ae5649166d4b141685fe21c
BLAKE2b-256 0a4df56b67271877db6a97f5b00758ab45c9798b2195e278890b2a6c93758d3a

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 d4da369614e55540c7e830ccdd17ab4fe5412ff8e803a4906d3ece393e2e3a63
MD5 851c7b572bf1c162951969a4f4a6f41a
BLAKE2b-256 431dc6e5e368ca2ec3ef734a95b1e98577a0a70142dace6592eb7c28ce8ba697

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 871669cdb5b3481650fe3adff46eb97c455e30ecdc307eaf382ef90d4e2570ab
MD5 91ea573ceec5ea75be90f2eeb1c6d175
BLAKE2b-256 a0a36c4b2919db5af50e492e7e5b124549c50f97723ad80d299587a2e5cd7d2f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5c9ff456d67ef9094e5ea272fff2be05d399a47fc30c6c8ed653b94bdf787bd1
MD5 a74019815c4d0e78f1bf62b745a221c5
BLAKE2b-256 471ce1bc08050492b2f5d74ef6a341a44459d861771c7d3d87b7a7bd2c33a622

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f9abae483f4d52acd6f660addb1b67e35dc5748655250af479de2ea6aefc6df0
MD5 c3562bc556dc3a4b790beca37a8a6492
BLAKE2b-256 e1b6b9f512dd5b57c1a8903b4ab5f97a0e88e1da3476ac1b941dd4334687c07c

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ba3fd442ae1a46830789b3578867daaf2c8409dcca6bf192e30e85beeabbfc2f
MD5 dfd7e5d431bae6881248226637a7d53d
BLAKE2b-256 c4b8eb447f84e0012b0bce97d12d1bc6ea6882b4ed9eb7faaca00e8f627733fb

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ce78bf4d10bd7e28807c36c6d2ab25a9934aaf80906ad987622a5e45627d91a2
MD5 833b7dbd0be9b50bf70203f2626d970b
BLAKE2b-256 8d0d517c08bfe64d519bb351513bf7e373c800fd297e60e31b287fe55770fe94

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 e54a3dd1fe1f8124de90b93c48d120e6da2ea8df29b6895325df01ddc1bd8e26
MD5 00615d2ef0d408472a9302e9a3ec1822
BLAKE2b-256 34e7a77db28ae842d39c643ff233c19646fd5aba0216ca25911ca0b2720ea448

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 a21cf8217e31a9e8e32c559246e05e6909981816152406945ae2e3e244dfcc1f
MD5 43c1baede6a31f5b3f4c60e69a635797
BLAKE2b-256 de47f3c67d6d552c36e13c5e8885a7f6d959868dae202726f987e26feb1aa2ec

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 370919e3148253fd6552496c33a1e3d78290a336fc8d1b9349d9e9770fae6ec0
MD5 12546b8e010100bfd486d5643f571056
BLAKE2b-256 51e77ea4d5af8b439ee1d206bd6c1f5386811cfd824100a3bd161084788a5e4e

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 873245b03361710f47c5410a050dc56ee8ae97b9f8dcc6e3a81521ca2b64ad10
MD5 7379e9bdf88d1252f99bc1cc9f860d63
BLAKE2b-256 d5c080649d6e1687ca74dd907c9447c4465f7af1a7cdd4e4084650cd4e8f5a79

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 3775cca4ce3f94508bb7c8a6b113044b78c16b0a30a5c169ddeb6b9fe57a8a72
MD5 61edd2c884b48489f3223bf74e08c158
BLAKE2b-256 ded347c2c9842d61042f3c5f082f677dbe05899b077272105906a3249fe8c5da

See more details on using hashes here.

File details

Details for the file scikit-learn-0.19.1.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for scikit-learn-0.19.1.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 fdc39e89bd3466befb76dfc0c258d4ccad159df974954a87de3be5759172a067
MD5 7f45b235511051a93faa43d972a5940e
BLAKE2b-256 75c1a2df7725723b151e2561ead1173617740648809c5d4b9f8f90c1659408b8

See more details on using hashes here.

File details

Details for the file scikit-learn-0.19.1.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.19.1.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 a58746d4f389ea7df1d908dba8b52f709835f91c342f459a3ade5424330c69d1
MD5 21badbc9f601ba1d894881ec7621fb6b
BLAKE2b-256 17d28cf7530a0f2930d7ad224ebdcca51fb6063acf3df1ab672c590144c302c9

See more details on using hashes here.

File details

Details for the file scikit-learn-0.19.1.win32-py3.5.exe.

File metadata

File hashes

Hashes for scikit-learn-0.19.1.win32-py3.5.exe
Algorithm Hash digest
SHA256 b2a10e2f9b73de10d8486f7a23549093436062b69139158802910a0f154aa53b
MD5 2e04a24cb7a70b974582ad611065165a
BLAKE2b-256 0c80574ad59e103a5c4c51a35544fd2c3cc5f7ff96ebbedb68fc23f99c5cc588

See more details on using hashes here.

File details

Details for the file scikit-learn-0.19.1.win32-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.19.1.win32-py2.7.exe
Algorithm Hash digest
SHA256 6e0899953611d0c47c0d49c5950082ab016b38811fced91cd2dcc889dd94f50a
MD5 08eee7fbba4efed9a0b6c2ee903a3e38
BLAKE2b-256 39fd14a7ef17c140079ab1e74b55d1a03d731aa6483bcee6231e5738ce3c63db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page