Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis AppVeyor Codecov CircleCI Python27 Python35 PyPi DOI

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 2.7 or >= 3.4)

  • NumPy (>= 1.8.2)

  • SciPy (>= 0.13.3)

Scikit-learn 0.20 is the last version to support Python2.7. Scikit-learn 0.21 and later will require Python 3.5 or newer.

For running the examples Matplotlib >= 1.4 is required. A few examples require scikit-image >= 0.11.3 and a few examples require pandas >= 0.17.1.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Setting up a development environment

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 3.3.0 installed):

pytest sklearn

See the web page http://scikit-learn.org/dev/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: http://scikit-learn.org/stable/about.html#citing-scikit-learn

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.20.0.tar.gz (28.1 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_learn-0.20.0-cp37-cp37m-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_learn-0.20.0-cp37-cp37m-win32.whl (4.3 MB view details)

Uploaded CPython 3.7mWindows x86

scikit_learn-0.20.0-cp37-cp37m-manylinux1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.20.0-cp37-cp37m-manylinux1_i686.whl (4.8 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.20.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.20.0-cp36-cp36m-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_learn-0.20.0-cp36-cp36m-win32.whl (4.3 MB view details)

Uploaded CPython 3.6mWindows x86

scikit_learn-0.20.0-cp36-cp36m-manylinux1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.20.0-cp36-cp36m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.20.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.20.0-cp35-cp35m-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.5mWindows x86-64

scikit_learn-0.20.0-cp35-cp35m-win32.whl (4.3 MB view details)

Uploaded CPython 3.5mWindows x86

scikit_learn-0.20.0-cp35-cp35m-manylinux1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.20.0-cp35-cp35m-manylinux1_i686.whl (4.8 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.20.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.20.0-cp34-cp34m-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.4mWindows x86-64

scikit_learn-0.20.0-cp34-cp34m-win32.whl (4.3 MB view details)

Uploaded CPython 3.4mWindows x86

scikit_learn-0.20.0-cp34-cp34m-manylinux1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.20.0-cp34-cp34m-manylinux1_i686.whl (4.8 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.20.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.20.0-cp27-cp27mu-manylinux1_x86_64.whl (5.5 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.20.0-cp27-cp27mu-manylinux1_i686.whl (5.0 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.20.0-cp27-cp27m-win_amd64.whl (4.9 MB view details)

Uploaded CPython 2.7mWindows x86-64

scikit_learn-0.20.0-cp27-cp27m-win32.whl (4.4 MB view details)

Uploaded CPython 2.7mWindows x86

scikit_learn-0.20.0-cp27-cp27m-manylinux1_x86_64.whl (5.5 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.20.0-cp27-cp27m-manylinux1_i686.whl (5.0 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.20.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (8.2 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file scikit-learn-0.20.0.tar.gz.

File metadata

  • Download URL: scikit-learn-0.20.0.tar.gz
  • Upload date:
  • Size: 28.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit-learn-0.20.0.tar.gz
Algorithm Hash digest
SHA256 97d1d971f8ec257011e64b7d655df68081dd3097322690afa1a71a1d755f8c18
MD5 a2a5dba9bad1d9fa335ea162b78e1101
BLAKE2b-256 0fd7136a447295adade38e7184618816e94190ded028318062a092daeb972073

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d393f810da9cd4746cad7350fb89f0509c3ae702c79d2ba8bd875201be4102d1
MD5 1d37176661948e8e32709acb0987644a
BLAKE2b-256 ce95037f6bfa883efbac4ffaaa1db1ad745214331f5e2d7fc8922e076c7ebb18

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 35ee532b5e992a6e8d8a71d325fd9e0b58716894657e7d3da3e7a1d888c2e7d4
MD5 e7da8d7a8222cbb9940b7754208678bd
BLAKE2b-256 0c0c411514aded29459ce4388454c69b9ab56cf0e69ce3ab128010e930c66977

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a2e18e5a4095b3ca4852eb087d28335f3bb8515df4ccf906d380ee627613837f
MD5 83112de583d2e356bf3d396c6524459b
BLAKE2b-256 567d0737aed3e157fb90a1eaecb1cbfa5742fa4206fb305c8f157b666b71da14

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bb33d447f4c6fb164d426467d7bf8a4901c303333c5809b85319b2e0626763cd
MD5 a10ba089b43ae7a7c23c109d7265e6e3
BLAKE2b-256 90443c343f7ed3b10036621fe6dcf576e9e4232cad743243e8d49f236451b48c

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bd189f6d0c2fdccb7c0d3fd1227c6626dc17d00257edbb63dd7c88f31928db61
MD5 97fd03a5504f215f8c9ffb1170b298de
BLAKE2b-256 281d9fd027fde8a23fa8e3ecdc00cec891cea7bb387ac9d3f77843925f7435b7

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7bcf7ade62ef3443470af32afb82646640d653f42502cf31a13cc17d3ff85d57
MD5 543b80a9072db526f62fdb7331b6c749
BLAKE2b-256 8f1c9c1d550068f015685d0fccb1726ace7163bbfe5b1a16bda1dcd28d99cb65

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 56aff3fa3417cd69807c1c74db69aee34ce08d7161cbdfebbff9b4023d9d224b
MD5 83a16fc315fe1abea7629e1f0b64208c
BLAKE2b-256 ba23d66465912a1c7d84e5215903dcf89ade2a835f852f2941c66ed7fd176d58

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 33ad23aa0928c64567a24aac771aea4e179fab2a20f9f786ab00ca9fe0a13c82
MD5 e7e0df6b11d2973bc49ce6710b59230a
BLAKE2b-256 0cb205be9b6da9ae4a4c54f537be22e95833f722742a02b1e355fdc09363877c

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a3070f71a4479a9827148609f24f2978f10acffa3b8012fe9606720d271066bd
MD5 ff8eab0387c045fb8dd25e955e30bffd
BLAKE2b-256 3af3f2fe32976dbfc16a2f1b215c9884112c6fdea580d9acd98eabd629ad05c4

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1ca280bbdeb0f9950f9427c71e29d9f14e63b2ffa3e8fdf95f25e13773e6d898
MD5 f762c0e2458269884971c0c2f0a8c50b
BLAKE2b-256 72c87a449014b506d4fed3d7fef5b86c0210ff882a13da82626a12ce9f7db616

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 99f22c3228ec9ab3933597825dc7d595b6c8c7b9ae725cfa557f16353fac8314
MD5 d3760f54d30bbc1ccf667fe1de368017
BLAKE2b-256 14ba3722ddb8658c1554ad17f3727728f9308d77e17bfc56b14206c86a160d18

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 4a364cf22be381a17c05ada9f9ce102733a0f75893c51b83718cd9358444921e
MD5 b496a86ce30ce048a628f33a7597ba49
BLAKE2b-256 ffbd24520ec254049c4ad72169790f7517d589421818640c038b62b1c6365b73

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4130760ac54f5946523c1a1fb32a6c0925e5245f77285270a8f6fb5901b7b733
MD5 5bc953efcecf2cc8236b1689b0a5f244
BLAKE2b-256 dc8f416ccf81408cd8ea84be2a38efe34cc885966c4b6edbe705d2642e22d208

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 58debb34a15cfc03f4876e450068dbd711d9ec36ae5503ed2868f2c1f88522f7
MD5 72e7c79232eba6d09e2ae46f45298294
BLAKE2b-256 7886c50a83953cd3fe0cff09d199a765c3f02a507e5faa48789e2e120e1dd0e6

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 46cc8c32496f02affde7abe507af99cd752de0e41aec951a0bc40c693c2a1e07
MD5 e1923e74aaf94d558f7902f147166975
BLAKE2b-256 644e31feac77584558986b60a728f7b0fc95e84305f74830a7641393e212b1b5

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp34-cp34m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp34-cp34m-win_amd64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.4m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 37cbbba2d2a3895bba834d50488d22268a511279e053135bb291f637fe30512b
MD5 a2783af66786728824fe51f4137adc95
BLAKE2b-256 5466aaa5d1eb9ebb71813799d9f29ddbbb7a088d2d2da87a2725bcbf2f230fdf

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp34-cp34m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp34-cp34m-win32.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.4m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 40cf1908ee712545f4286cc21f3ee21f3466c81438320204725ab37c96849f27
MD5 210685aff49872ca9c1a5d7327fc78b5
BLAKE2b-256 dc363eaedd8a42b06ecae8c021b6908166094e47925e33a42cdd356f94d12dfa

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ab2c4266b8cd159a266eb03c709ad5400756dca9c45aa48fb523263344475093
MD5 d0b8bf5bfc7397b669da66904aea9091
BLAKE2b-256 5cb10dfee30056170c49ec5bebefb9e30c22f1477366b834d47eb0115d79a463

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a7f6f5b3bc7b8e2066076098788579af12bd507ccea8ca6859e52761aa61eaca
MD5 bd5df6d9830f8d1bef8e5854885a3fd4
BLAKE2b-256 67ea193dcebc37f7d875960d97bf993499f0850ff0beb97bd66d4a9df64fc9b1

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bc2a0116a67081167f1fbfed731d361671e5925db291b70e65fa66170045c53f
MD5 277b2a63925c3b9372a483b98d7a6d6f
BLAKE2b-256 9bbc3f579cb9c58e3fdc7d4d66e9b47822ee5e6679dcf72d206831c77d8b6554

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 86697c6e4c2d74fbbf110c6d5979d34196a55108fa9896bf424f9795a8d935ad
MD5 5ae4f87b8088bced7f76b88d0fed5fca
BLAKE2b-256 d43fd9225d7d651a0e5562c0896bd9334fff40be1916bdfa07b150d0c0a7c7e2

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 344bc433ccbfbadcac8c16b4cec9d7c4722bcea9ce19f6da42e2c2f805571941
MD5 71aa311111843a7490fde99a79a1fbfb
BLAKE2b-256 ac66081489fe2a33a6bb29ef20fd285ad8147829b9c8a046262a8a3554a8dacd

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 7d4eab203ed260075f47e2bf6a2bd656367e4e8683b3ad46d4651070c5d1e9aa
MD5 d79efab698791e36badc14b500a3f92e
BLAKE2b-256 db78412ee86b3c2d6b575149bf33a1d3ce232bdb5d8d4a1a352b6aa723ed99f0

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp27-cp27m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 a6a197499429d2eaa2ae922760aa3966ef353545422d5f47ea2ca9369cbf7d26
MD5 2b6f823c8e1df143412592520b8d631e
BLAKE2b-256 385ffb3f7a2e709dd6186217d8fafe7fc1d5558e2ae24c12cded8b13d08bd8da

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a82b90b6037fcc6b311431395c11b02555a3fbf96921a0667c8f8b0c495991cb
MD5 855877921c771b11bd9b35a38be11617
BLAKE2b-256 dfb6e6289e8882c12ca508c025c475f3eb37ba0f12ceabcfee0b087bf6c6e136

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.0-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b983a2dfdb9d707c78790608bcfd63692e5c2d996865a9689f3db768d0a2978d
MD5 a79c2a0e64dbc47a389fd7228685e1d0
BLAKE2b-256 337a62a2532d13a352929722bde01b301ba29bf2498fd250fa02ffc64a043469

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 911115db6669c9b11efd502dcc5483cd0c53e4e3c4bcdfe2e73bbb27eb5e81da
MD5 4d541c9b0a47eb89235a11f5d6390001
BLAKE2b-256 112aca1d592d30856cf0d72fa3fb581f4c7fef81511411283ca412e9c12af769

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page