Skip to main content
Help us improve PyPI by participating in user testing. All experience levels needed!

A set of python modules for machine learning and data mining

Project description

Travis

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Note scikit-learn was previously referred to as scikits.learn.

Dependencies

scikit-learn is tested to work under Python 2.6, Python 2.7, and Python 3.4. (using the same codebase thanks to an embedded copy of six). It should also work with Python 3.3.

The required dependencies to build the software are NumPy >= 1.6.1, SciPy >= 0.9 and a working C/C++ compiler.

For running the examples Matplotlib >= 1.1.1 is required and for running the tests you need nose >= 1.1.2.

This configuration matches the Ubuntu Precise 12.04 LTS release from April 2012.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

Install

This package uses distutils, which is the default way of installing python modules. To install in your home directory, use:

python setup.py install --user

To install for all users on Unix/Linux:

python setup.py build
sudo python setup.py install

Development

Code

GIT

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

or if you have write privileges:

git clone git@github.com:scikit-learn/scikit-learn.git

Contributing

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

$ nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/install.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Release history Release notifications

History Node

0.19.1

History Node

0.19.0

History Node

0.19b2

History Node

0.18.2

History Node

0.18.1

History Node

0.18

History Node

0.18rc2

History Node

0.17.1

History Node

0.17

History Node

0.17b1

This version
History Node

0.16.1

History Node

0.16.0

History Node

0.16b1

History Node

0.15.2

History Node

0.15.1

History Node

0.15.0

History Node

0.15.0b2

History Node

0.15.0b1

History Node

0.14.1

History Node

0.14

History Node

0.14a1

History Node

0.13.1

History Node

0.13

History Node

0.12.1

History Node

0.12

History Node

0.11

History Node

0.10

History Node

0.9

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
scikit_learn-0.16.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.4 MB) Copy SHA256 hash SHA256 Wheel cp27 Apr 14, 2015
scikit_learn-0.16.1-cp27-none-win32.whl (2.8 MB) Copy SHA256 hash SHA256 Wheel cp27 Apr 14, 2015
scikit_learn-0.16.1-cp27-none-win_amd64.whl (3.1 MB) Copy SHA256 hash SHA256 Wheel cp27 Apr 14, 2015
scikit_learn-0.16.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.1 MB) Copy SHA256 hash SHA256 Wheel cp33 Apr 14, 2015
scikit_learn-0.16.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.1 MB) Copy SHA256 hash SHA256 Wheel cp34 Apr 14, 2015
scikit_learn-0.16.1-cp34-none-win32.whl (2.7 MB) Copy SHA256 hash SHA256 Wheel cp34 Apr 14, 2015
scikit_learn-0.16.1-cp34-none-win_amd64.whl (2.9 MB) Copy SHA256 hash SHA256 Wheel cp34 Apr 14, 2015
scikit-learn-0.16.1.tar.gz (7.3 MB) Copy SHA256 hash SHA256 Source None Apr 14, 2015
scikit-learn-0.16.1.win32-py2.7.exe (3.1 MB) Copy SHA256 hash SHA256 Windows Installer 2.7 Apr 14, 2015
scikit-learn-0.16.1.win32-py3.4.exe (3.0 MB) Copy SHA256 hash SHA256 Windows Installer 3.4 Apr 14, 2015
scikit-learn-0.16.1.win-amd64-py2.7.exe (3.3 MB) Copy SHA256 hash SHA256 Windows Installer 2.7 Apr 14, 2015
scikit-learn-0.16.1.win-amd64-py3.4.exe (3.2 MB) Copy SHA256 hash SHA256 Windows Installer 3.4 Apr 14, 2015

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page