Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis AppVeyor Coveralls

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Note scikit-learn was previously referred to as scikits.learn.

Dependencies

scikit-learn is tested to work under Python 2.6, Python 2.7, and Python 3.4. (using the same codebase thanks to an embedded copy of six). It should also work with Python 3.3.

The required dependencies to build the software are NumPy >= 1.6.1, SciPy >= 0.9 and a working C/C++ compiler.

For running the examples Matplotlib >= 1.1.1 is required and for running the tests you need nose >= 1.1.2.

This configuration matches the Ubuntu Precise 12.04 LTS release from April 2012.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

Install

This package uses distutils, which is the default way of installing python modules. To install in your home directory, use:

python setup.py install --user

To install for all users on Unix/Linux:

python setup.py build
sudo python setup.py install

For more detailed installation instructions, see the web page http://scikit-learn.org/stable/install.html

Development

Code

GIT

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

or if you have write privileges:

git clone git@github.com:scikit-learn/scikit-learn.git

Contributing

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

$ nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/install.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.17.tar.gz (7.8 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.17-cp35-none-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.5Windows x86-64

scikit_learn-0.17-cp35-none-win32.whl (3.0 MB view details)

Uploaded CPython 3.5Windows x86

scikit_learn-0.17-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.17-cp34-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.4Windows x86-64

scikit_learn-0.17-cp34-none-win32.whl (3.0 MB view details)

Uploaded CPython 3.4Windows x86

scikit_learn-0.17-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.17-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.3mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.17-cp27-none-win_amd64.whl (3.4 MB view details)

Uploaded CPython 2.7Windows x86-64

scikit_learn-0.17-cp27-none-win32.whl (3.1 MB view details)

Uploaded CPython 2.7Windows x86

scikit_learn-0.17-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.9 MB view details)

Uploaded CPython 2.7macOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit-learn-0.17.win-amd64-py3.5.exe (3.4 MB view details)

Uploaded Source

scikit-learn-0.17.win-amd64-py3.4.exe (3.5 MB view details)

Uploaded Source

scikit-learn-0.17.win-amd64-py2.7.exe (3.6 MB view details)

Uploaded Source

scikit-learn-0.17.win32-py3.5.exe (3.2 MB view details)

Uploaded Source

scikit-learn-0.17.win32-py3.4.exe (3.3 MB view details)

Uploaded Source

scikit-learn-0.17.win32-py2.7.exe (3.4 MB view details)

Uploaded Source

File details

Details for the file scikit-learn-0.17.tar.gz.

File metadata

  • Download URL: scikit-learn-0.17.tar.gz
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scikit-learn-0.17.tar.gz
Algorithm Hash digest
SHA256 23a5b6804524cb2cd54d8310010169511c7633dcf69af7439747eec02677f314
MD5 4b5cebc8c92cfe33749ae8ab3b2149b7
BLAKE2b-256 60b8c420dce3f72d95e06f7c1e50a6e705f4e8b6078d7d6db38425ac77ae3fab

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 9e5ded17ccb3b87823536cac09328c33a622b9506627a75a9202209409b007b0
MD5 4c0fa06f460eeb776a9f570dd718989f
BLAKE2b-256 6d215dc686dcb0705e3ab914427afc6a7b73e8241db8d5a67bd7962520fc7e5f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17-cp35-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17-cp35-none-win32.whl
Algorithm Hash digest
SHA256 907db5a2b3fa85c8fd597cbf751491c0e3ec7cae3835546050280f41c88d4e79
MD5 5a8dd51a6e12291dcfa0819fa3a87677
BLAKE2b-256 17e39d6e812beabbc08fc5191a51f3a4d4fe0dfba26847b689d3de49f5729d5b

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1376a774db99bdd1969d7a06e88d6bd9a9e1812cb8e6db2d35bd0da60a2b7a4d
MD5 1cbf7e0cdfc42881bbbf87ccd9f08834
BLAKE2b-256 21fe3c7de60987f5ee5baa399ebc35afd8c28db13f804c4753c60564567e03c1

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 d704ce1b7c761a04080bc3120e6764595324e6a5b0d1251b83f9c2dc4ae3142e
MD5 2085e9be8efbf8bb02c2f17c790abdd7
BLAKE2b-256 e95492455f03dac66e1f50472dedfb375218d3cd3bada89395734f2116d18fe0

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17-cp34-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17-cp34-none-win32.whl
Algorithm Hash digest
SHA256 fec9496cd413a600e197fddb4ad4519e2583d00fcc18ddc66660fed0691c7fa0
MD5 ea795385750e3bdf6a5dc629c1e99c3e
BLAKE2b-256 01804d57f03974014074c589c6335a14c964134525cf55a1decde79469b3cb4f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c5650f657f83020d01b64b3c26646d7056749d56f76999b45c5fc11d4272efad
MD5 e3fdcf228dff8c34130efffad5f094b5
BLAKE2b-256 1321159505ec74195f634f3e9cdae55ea032aa313a0d782dd1db8659f59bd8ec

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c70fac790f94e1bb34160f2571959e35054597cfdb312fc886edc67d86499f85
MD5 f59b91a585f797e130b40400e33053b6
BLAKE2b-256 116c8e0be07d3bf38e58dac251d14a4f31e6f45324b97b04a0ca9b179a22af9f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 c74633d0a287d0c4f8f7bf4c880ade41089ab9b2a554277701fac6e0de484188
MD5 64b687c869e8c17fed5ca75ac4da3687
BLAKE2b-256 508150287749f65128f51a0167df09cfd458f40660277b3ab8d88d17d958ec21

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17-cp27-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17-cp27-none-win32.whl
Algorithm Hash digest
SHA256 84a864b914c78f4d17880fac37a05ca3b194d3fedea71c01c28f38c01e72c942
MD5 23df7d8437f6898200167fd76bda3d21
BLAKE2b-256 b4ddb9b1a05e2e6849eed9bf97e5d1ab9996c841874f7618bd6184fc832e14b3

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e432363254b994535f38dc4a34570941576eb1d386f5f9cda261e4e197228c2f
MD5 dc8b046c3284eeddddc7d63631ebe3cc
BLAKE2b-256 0aa5f9f7aaa7b55a72195fcf85aa3e79495140bb2c6fff4c2655f56668a277de

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 dd114970f51b1583f4b5651d1a2efa43b1ea90de0fa5d20b9f70fdb9ebf77463
MD5 246ccaccecad4b83f79bb9cedb97219d
BLAKE2b-256 0ab2a65fce287b8eb851cfeecb52b6cf402502fd598aca4c190df2bf2988b639

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 259a62d15e489f0f7dede8e5e83bb65e09d902bd2a0e740cf62751eeadd4f48d
MD5 142e2e3d6917fbce2f4b599e3f8ad068
BLAKE2b-256 796ac316c0732a133c9fab341451c8a0dc24d55df28bd736e90fb62387ff2d74

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 a261e403adf87db9cd0c319f1a2b0b7a17f49736d407677c3c5e06f987069b19
MD5 e7dc22a5cfe9ec9147f8c46b0f733f14
BLAKE2b-256 85e69fc99eada970be6e27b01984fa8058fde9a12b01e619f49c4fa2580c0e2a

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.win32-py3.5.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.win32-py3.5.exe
Algorithm Hash digest
SHA256 f132b4279f554840491ffab054f7df35ae1e3a837959e4f454e584ea31954db2
MD5 1023490cf9d09612338efa04deb31b83
BLAKE2b-256 8a0df995e6ba0959aa0b8bb23fdb7d57a15cb50c36393265c1aa5fcb8db89c7f

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.win32-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.win32-py3.4.exe
Algorithm Hash digest
SHA256 6437c2b6043d29d47ef5008540f55fdf53f26a525e62997cddaf4f199d56b019
MD5 e5beeb38bce10e935f59ed35d0aee6cd
BLAKE2b-256 7ad93b3181e382927b09ecb633245ed240769877c55963ec3a8540e74c8d55a3

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.win32-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.win32-py2.7.exe
Algorithm Hash digest
SHA256 7a6e2b01bd463b789bc430c498b9aee6710dca77a4e4a331da61181d5764e78a
MD5 82a9314d18751d58f09e60078681dcb7
BLAKE2b-256 f90ba4f8ac7455465ef6fc3ea38c4008fa374ad8865109a04e012c91a40d0281

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page