Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure CirrusCI Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • SciPy (>= 1.5.0)

  • joblib (>= 1.1.1)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 3.1.3). For running the examples Matplotlib >= 3.1.3 is required. A few examples require scikit-image >= 0.16.2, a few examples require pandas >= 1.0.5, some examples require seaborn >= 0.9.0 and plotly >= 5.14.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 7.1.2 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.3.2.tar.gz (7.5 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.3.2-cp312-cp312-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl (9.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scikit_learn-1.3.2-cp311-cp311-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scikit_learn-1.3.2-cp310-cp310-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_learn-1.3.2-cp39-cp39-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scikit_learn-1.3.2-cp38-cp38-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scikit-learn-1.3.2.tar.gz.

File metadata

  • Download URL: scikit-learn-1.3.2.tar.gz
  • Upload date:
  • Size: 7.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for scikit-learn-1.3.2.tar.gz
Algorithm Hash digest
SHA256 a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05
MD5 62650e7a21f8cf076bafbc75e1b9f7da
BLAKE2b-256 8800835e3d280fdd7784e76bdef91dd9487582d7951a7254f59fc8004fc8b213

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107
MD5 0aa2573d0037802cdf27285fbd525af1
BLAKE2b-256 fe6bdb949ed5ac367987b1f250f070f340b7715d22f0c9c965bdf07de6ca75a3

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c
MD5 8c24fc045ad2941b1f6f7058b3374d88
BLAKE2b-256 5db7ee35904c07a0666784349529412fbb9814a56382b650d30fd9d6be5e5054

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525
MD5 dd0e971589657b2f025741ce21048f9d
BLAKE2b-256 e5a76f4ae76f72ae9de162b97acbf1f53acbe404c555f968d13da21e4112a002

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5
MD5 fd41e6f6dfd4493b1732a39ca431a3cd
BLAKE2b-256 cffc6c52ffeb587259b6b893b7cac268f1eb1b5426bcce1aa20e53523bfe6944

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028
MD5 3cc5aa8df0dfc338d6c1673d6449cb17
BLAKE2b-256 267e2c3b82c8c29aa384c8bf859740419278627d2cdd0050db503c8840e72477

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b
MD5 7f4a524a344515101168f7aec32378cc
BLAKE2b-256 4ebace9bd1cd4953336a0e213b29cb80bb11816f2a93de8c99f88ef0b446ad0c

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433
MD5 7e169d86b1df492f74ce7e6c0cd80541
BLAKE2b-256 0c2ad3ff6091406bc2207e0adb832ebd15e40ac685811c7e2e3b432bfd969b71

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb
MD5 00235bc40fef95eac6da302ddf4bc97c
BLAKE2b-256 fafdb3637639e73bb72b12803c5245f2a7299e09b2acd85a0f23937c53369a1c

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157
MD5 2a6c79a29162bc3f63b63b20e11330af
BLAKE2b-256 40c62e91eefb757822e70d351e02cc38d07c137212ae7c41ac12746415b4860a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66
MD5 c1043fcc14537adddd5b433ccfc3ca73
BLAKE2b-256 085de5acecd6e99a6b656e42e7a7b18284e2f9c9f512e8ed6979e1e75d25f05f

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c
MD5 d7fb928919075d45655d7f3ddd238f28
BLAKE2b-256 698acf17d6443f5f537e099be81535a56ab68a473f9393fbffda38cd19899fc8

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161
MD5 127ffb19c463684133e36cc2a37abba5
BLAKE2b-256 d00b26ad95cf0b747be967b15fb71a06f5ac67aba0fd2f9cd174de6edefc4674

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c
MD5 a5d79f70071fb4efad2180945ff0541c
BLAKE2b-256 8f46fcc35ed7606c50d3072eae5a107a45cfa5b7f5fa8cc48610edd8cc8e8550

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a
MD5 010b254ba5119e7f4fd628b008c19419
BLAKE2b-256 70d050ace22129f79830e3cf682d0a2bd4843ef91573299d43112d52790163a8

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1
MD5 db25573b0b3087354adcd16ef9bf81ec
BLAKE2b-256 0d53570b55a6e10b8694ac1e3024d2df5cd443f1b4ff6d28430845da8b9019b3

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0
MD5 cf2587b0cc00aa110652119d9037141d
BLAKE2b-256 1c4930ffcac5af06d08dfdd27da322ce31a373b733711bb272941877c1e4794a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9
MD5 a05f219685a1babe3eac70313a8916c0
BLAKE2b-256 2589dce01a35d354159dcc901e3c7e7eb3fe98de5cb3639c6cd39518d8830caa

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a
MD5 360ac1868a49a1396192fd3652d11342
BLAKE2b-256 612e5bbf3c9689d2911b65297fb5861c4257e54c797b3158c9fca8a5c576644b

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e
MD5 c150171ba3d32a3093d91afe0bcf7dcc
BLAKE2b-256 200f51e3ccdc87c25e2e33bf7962249ff8c5ab1d6aed0144fb003348ce8bd352

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03
MD5 b123ba16523c6dd3d7ff894b989ef730
BLAKE2b-256 f867584acfc492ae1bd293d80c7a8c57ba7456e4e415c64869b7c240679eaf78

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0
MD5 e72db5d34930d2cb9f11da91799849e4
BLAKE2b-256 522dad6928a578c78bb0e44e34a5a922818b14c56716b81d145924f1f291416f

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf
MD5 56fe821c54efe86389792c2146ad3b1c
BLAKE2b-256 3f486fdd99f5717045f9984616b5c2ec683d6286d30c0ac234563062132b83ab

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d
MD5 533e5b0ddcb72236cac57d1b4daf3c77
BLAKE2b-256 498191585dc83ec81dcd52e934f6708bf350b06949d8bfa13bf3b711b851c3f4

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073
MD5 0719f4d914cb0b26efbdff2a1c3c4008
BLAKE2b-256 a46292e9cec3deca8b45abf62dd8f6469d688b3f28b9c170809fcc46f110b523

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93
MD5 8a6cc9590caa150bfedebe62dcb24fe1
BLAKE2b-256 e352fd60b0b022af41fbf3463587ddc719288f0f2d4e46603ab3184996cd5f04

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page