Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure CirrusCI Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • SciPy (>= 1.3.2)

  • joblib (>= 1.1.1)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 3.1.3). For running the examples Matplotlib >= 3.1.3 is required. A few examples require scikit-image >= 0.16.2, a few examples require pandas >= 1.0.5, some examples require seaborn >= 0.9.0 and plotly >= 5.10.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.3.1 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.2.2.tar.gz (7.3 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.2.2-cp311-cp311-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scikit_learn-1.2.2-cp311-cp311-macosx_12_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scikit_learn-1.2.2-cp311-cp311-macosx_10_9_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scikit_learn-1.2.2-cp310-cp310-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.2.2-cp310-cp310-macosx_12_0_arm64.whl (8.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.2.2-cp310-cp310-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_learn-1.2.2-cp39-cp39-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.2.2-cp39-cp39-macosx_12_0_arm64.whl (8.5 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.2.2-cp39-cp39-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scikit_learn-1.2.2-cp38-cp38-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scikit_learn-1.2.2-cp38-cp38-macosx_12_0_arm64.whl (8.3 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scikit_learn-1.2.2-cp38-cp38-macosx_10_9_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scikit-learn-1.2.2.tar.gz.

File metadata

  • Download URL: scikit-learn-1.2.2.tar.gz
  • Upload date:
  • Size: 7.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for scikit-learn-1.2.2.tar.gz
Algorithm Hash digest
SHA256 8429aea30ec24e7a8c7ed8a3fa6213adf3814a6efbea09e16e0a0c71e1a1a3d7
MD5 253d387243d60b984f7ec5cf441ffa64
BLAKE2b-256 c9fa8e158d81e3602da1e7bafbd4987938bc003fe4b0f44d65681e7f8face95a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8b0670d4224a3c2d596fd572fb4fa673b2a0ccfb07152688ebd2ea0b8c61025c
MD5 4af4c756aa50220a36312d40e6929ee3
BLAKE2b-256 db98169b46a84b48f92df2b5e163fce75d471f4df933f8b3d925a61133210776

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf036ea7ef66115e0d49655f16febfa547886deba20149555a41d28f56fd6d3c
MD5 5664796e036f6669ea51a695b89c1195
BLAKE2b-256 4c64a1e6e92b850b39200c82e3bc54d556b2c634b3904c39ac5cdb10b1c5765f

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 065e9673e24e0dc5113e2dd2b4ca30c9d8aa2fa90f4c0597241c93b63130d233
MD5 a5e7ce3d2c889291e80d093a1fdaf003
BLAKE2b-256 d78a301594a8bb1cfeeb95dd86aa7dfedd31e93211940105429abddf0933cfff

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 fe0aa1a7029ed3e1dcbf4a5bc675aa3b1bc468d9012ecf6c6f081251ca47f590
MD5 93d5b10281c8665967a8c49f2c1a8916
BLAKE2b-256 2ffd9fcbe7fe94150e72d87120cbc462bde1971c3674e726b81f4a4c4fdfa8e1

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dfeaf8be72117eb61a164ea6fc8afb6dfe08c6f90365bde2dc16456e4bc8e45f
MD5 6d94b31584e478bbaf9867ac42ac89cb
BLAKE2b-256 274a1afe473760b07663710a75437b795ef37362aebb8bf513ff3bbf78fbd0c6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ad66c3848c0a1ec13464b2a95d0a484fd5b02ce74268eaa7e0c697b904f31d6c
MD5 42e840cf80a31ab14d5910eade4ce55f
BLAKE2b-256 f44dfe3b35e18407da4b386be58616bd0f941ea1762a6c6798267f3aa64ef5d5

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e2642baa0ad1e8f8188917423dd73994bf25429f8893ddbe115be3ca3183584
MD5 254deeb36765d04853aa1b8be2a5478f
BLAKE2b-256 fa1e36d7609e84b50d4a2e5bc43cd5013d9ea885799e5813a1e9cf5bb1afd3f4

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fe83b676f407f00afa388dd1fdd49e5c6612e551ed84f3b1b182858f09e987d
MD5 52625c17717294aa1a5d5abb7fae4dca
BLAKE2b-256 4892a39d1c9e0a6cb5ed4112899ecca590138484356ba8c4274dde6c3893ff14

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e6e574db9914afcb4e11ade84fab084536a895ca60aadea3041e85b8ac963edb
MD5 7f233668c0e01831f225ec3c10fb458c
BLAKE2b-256 5a435c4d21217df6a033999ee531fdfd52809263727b4afb26f7196a8ec709ae

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 99cc01184e347de485bf253d19fcb3b1a3fb0ee4cea5ee3c43ec0cc429b6d29f
MD5 107690891306fd36b432cb41926a99c1
BLAKE2b-256 3c21ee21352f69a980614cb4193d68a64a83aa2c0f80183c9485d6d61821a922

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6477eed40dbce190f9f9e9d0d37e020815825b300121307942ec2110302b66a3
MD5 1e058db3e80c35e7d8d30b9d77623dab
BLAKE2b-256 51b6d9a414b6579c4ec5703cebc0fe7b7b6821344190bffa3d46a1a23efd173a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea061bf0283bf9a9f36ea3c5d3231ba2176221bbd430abd2603b1c3b2ed85c89
MD5 018a92f3a7dd3ed11eac690a84dcff89
BLAKE2b-256 8184756be2b975959a5f94124d5584ead75d7ca99184f2d16664a0157b274b9a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d5312d9674bed14f73773d2acf15a3272639b981e60b72c9b190a0cffed5bad
MD5 2db01742a5eecb04f32e09ced9fc9fba
BLAKE2b-256 4f6ba204ee49e2d4dec62b38394adbdc7672e9a9df9f359a80705a07a46cace6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 fe175ee1dab589d2e1033657c5b6bec92a8a3b69103e3dd361b58014729975c3
MD5 be94ef06f37488ac89897b775ebc6147
BLAKE2b-256 398595298f12ec1ed756938edafe9f15498109ec8dbfc833ae492ae1cc333933

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8156db41e1c39c69aa2d8599ab7577af53e9e5e7a57b0504e116cc73c39138dd
MD5 1ba815463527303e56545e5cbe0a8f0f
BLAKE2b-256 72aaa97b6ae8fc4ce0e1b3837b3613b0563ce843eb34cf4089fb41d613dee957

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7f69313884e8eb311460cc2f28676d5e400bd929841a2c8eb8742ae78ebf7c20
MD5 810f4b4e2f7a9064b12e0e93f176e35e
BLAKE2b-256 5bfb478a0460ae2843dd2fc7a7f9ddcd8bb033ae21eb968df6a8cbe8094a28bc

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 953236889928d104c2ef14027539f5f2609a47ebf716b8cbe4437e85dce42744
MD5 87405465e893d73d3df895806de0e367
BLAKE2b-256 51d158faa69e97ee60e99dcdde5df43f17f0887eda5de9eafb6534a51b63d791

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44b47a305190c28dd8dd73fc9445f802b6ea716669cfc22ab1eb97b335d238b1
MD5 78adfa62c8f376193fd0ad254a920432
BLAKE2b-256 3a9c7e26446b45192186c63bf6e9fc50a4834b8c9d85a719e06d60a244ded6f3

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2dd3ffd3950e3d6c0c0ef9033a9b9b32d910c61bd06cb8206303fb4514b88a49
MD5 21d8bde955de77e7e97df01c4108a7a6
BLAKE2b-256 aea8829ef05dbeb9aa4436190ea00c8db6d59a39751b45e17932221d27fe9e51

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c710ff9f9936ba8a3b74a455ccf0dcf59b230caa1e9ba0223773c490cab1e51
MD5 f31a5264f6102dd5ade7d5b191e2cdc0
BLAKE2b-256 1713d4142c9105507ba363d9f3602941b7baf79763cc17e73fa9be826ba3aa89

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page