Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure Travis Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • SciPy (>= 1.3.2)

  • joblib (>= 1.1.1)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 3.1.3). For running the examples Matplotlib >= 3.1.3 is required. A few examples require scikit-image >= 0.16.2, a few examples require pandas >= 1.0.5, some examples require seaborn >= 0.9.0 and plotly >= 5.10.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.3.1 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.2.1.tar.gz (7.3 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.2.1-cp311-cp311-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.11Windows x86-64

scikit_learn-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

scikit_learn-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

scikit_learn-1.2.1-cp311-cp311-macosx_12_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.11macOS 12.0+ ARM64

scikit_learn-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

scikit_learn-1.2.1-cp310-cp310-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.10Windows x86-64

scikit_learn-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

scikit_learn-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

scikit_learn-1.2.1-cp310-cp310-macosx_12_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.10macOS 12.0+ ARM64

scikit_learn-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

scikit_learn-1.2.1-cp39-cp39-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.9Windows x86-64

scikit_learn-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

scikit_learn-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

scikit_learn-1.2.1-cp39-cp39-macosx_12_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.9macOS 12.0+ ARM64

scikit_learn-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

scikit_learn-1.2.1-cp38-cp38-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.8Windows x86-64

scikit_learn-1.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

scikit_learn-1.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

scikit_learn-1.2.1-cp38-cp38-macosx_12_0_arm64.whl (8.3 MB view details)

Uploaded CPython 3.8macOS 12.0+ ARM64

scikit_learn-1.2.1-cp38-cp38-macosx_10_9_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file scikit-learn-1.2.1.tar.gz.

File metadata

  • Download URL: scikit-learn-1.2.1.tar.gz
  • Upload date:
  • Size: 7.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for scikit-learn-1.2.1.tar.gz
Algorithm Hash digest
SHA256 fbf8a5c893c9b4b99bcc7ed8fb3e8500957a113f4101860386d06635520f7cfb
MD5 6b0fd293529cfc154f5afa5af84f33fb
BLAKE2b-256 86ccf2685fc3fc37122fe8be22e6c0dfdaeab49026625b8c2cf41bc87b1cdd4d

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5523e21ab2b4d52b2bd41bedd335dbe8f3c1b5f6dd7c9c001b2e17ec9818af8d
MD5 b44d72a972a0f29f255d95c2f72849e8
BLAKE2b-256 f3ff335ea1e87a0fb53e9ef340decd197c11215c971fb0448eff3fdb4e8205dd

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 479aedd0abedbda6b8b4529145fe4cd8622f69f726a72cef8f75548a93eeb1e1
MD5 bc1917a69ffd143e1e4d5ad78b16bba8
BLAKE2b-256 805347bed2190d2d86914223454f69744553521bc20c7de922d6a3b5300316ab

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cba0c7c6bf1493f8ce670bab69f9317874826ee838988de377ae355abd4d74cf
MD5 abccfe81571b0a4f1a56d2bb3f517d70
BLAKE2b-256 e8ed4475fcfb97bf0952a5cabdfc770e155f8c7502340333cd5f613185b33df6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5a8111f3c7a314017ebf90d6feab861c11d1ca14f3dbafb39abcc31aa4c54ba6
MD5 fb3b22d3baff3d6256862c955f53c9e9
BLAKE2b-256 f9951809108c46c2a235522c43659d3fa049f3a9a5ae3f5e143e664af524abb2

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70fa30d146b7e9d0c256e73e271b3e17f23123b7c4adcbde1a385031adf59090
MD5 fa095954f1b67099cc1f9f9fed62e65b
BLAKE2b-256 e3c7a229a30b01f8891ec0c63062153e63ecbb624b5308ec6b374850663a092a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a9abf17d177df54e529154f26acfd42930e19117d045e8a9a8e893ca82dd94ec
MD5 c4ffd2678189e5a2ddea070820ce9860
BLAKE2b-256 5bae86420a0bc19059ee5881312edb4c852e64c8d2606bc6dba011d88e72fc80

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8bcd303dd982494842a3f482f844d539484c6043b4eed896b43ea8e5f609a21
MD5 150b662c28b485f2d9384e57a54f4826
BLAKE2b-256 805ef095ccdf24860a7548b39f93d2df03017ad3218f90a0406feb5e5661d0c7

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc838b5a4057c55ba81b82316ea8bf443af445f96eb21500b0e40618017e0923
MD5 c8a57f61795206896581dda80ecdcbcb
BLAKE2b-256 676ec97b24a8af70b1e8983ac1fd6d66d9b650c3051ed2abb5afdbaa4f464177

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 c9285275a435d1f8f47bbe3500346ab9ead2499e0e090518404d318ea90d1c1c
MD5 c089950d2892b201700b6f92c1a054d7
BLAKE2b-256 019df324b8fc4f754b5658a3da4c84935e34c5f981682c72b881dcb1fc3e2a8e

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bed9f75763bd392c094bf474c7ab75a01d68b15146ea7a20c0f9ff6fb3063dad
MD5 8e3841bcc5b239f549c7428297178f26
BLAKE2b-256 e36a7190eaad30b55bc68b9d2872b21d42692924ac9a7d274636e112ed51a08b

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for scikit_learn-1.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c722f3446ad8c4f1a93b2399fe1a188635b94709a3f25e6f4d61efbe75fe8eaa
MD5 3e77413af5246777e7c6ca7efff07334
BLAKE2b-256 68d443923b9681bbdc9cbee7708dcead33dfcbfcba090ecb0c507af3669c8480

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0ee4d4d32c94e082344308528f7b3c9294b60ab19c84eb37a2d9c88bdffd9d1
MD5 14ec02a7aeb078aa020db535d3adaec9
BLAKE2b-256 de5ba3ee68c28dde18b9b744124c7e1701b8e5d588c8b0ef44d233864a97cffc

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 61bb9c654b5d2e6cdd4b1c7e6048fc66270c1682bda1b0f7d2726fdae09010f4
MD5 c46af0cbc44f009ebadf7db427ea6535
BLAKE2b-256 b85b945891bd69a4a825ff253de4eb8d976fd77a782a5c3f2537991b3b21b966

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 da0e2d50a8435ea8dc5cd21f1fc1a45d329bae03dcca92087ebed859d22d184e
MD5 16fe8383aa6e3d440a5dcec15a112a45
BLAKE2b-256 04213f870c6e4399eef775062a6eaf951d034dd08ab7ef6509292ca6f5fbcfef

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d00e46a2a7fce6e118ed0f4c6263785bf6c297a94ffd0cd7b32455043c508cc8
MD5 560fc61015345450885702432c4281fa
BLAKE2b-256 9a295f428cb6098188c8e19a92d9af1e0794f121c6a2c41f94c59bf426106175

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for scikit_learn-1.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 54731e2c2fbff40da6d76cbb9022ace5f44a4020a10bd5cd92107e86882bad15
MD5 e13cf42e63d44652d3e8e84f65d8d201
BLAKE2b-256 5d303af7a1073da6181208cdefe749f8243cd66e1036601bc870dfafb7fd3602

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b2c5d9930ced2b7821ad936b9940706ccb5471d89b8a516bb641cec87257d1c
MD5 d2c9f4ae53bce092f74e0798f9ff842d
BLAKE2b-256 f0950ea0a2412e33080a47ec02802210c008a7a540471581c95145f030d304b4

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dbb7831b2308c67bb6dd83c5ea3cdaf8e8cafd2de4000b93d78bb689126bd2cf
MD5 bf1f5d2419e5281ef39dc5fb6bc870a8
BLAKE2b-256 f48f4a599b647f355d7f1e9d4470a56be1e0dc6ced84025692b35fd658eebcc9

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 559f66e12f93b34c8c85c0a5728c3b8af98f04eb12f2c9ee18ea3c82c3d2fad1
MD5 1ddb7a002855f8814812006fe0497200
BLAKE2b-256 ed2828e75d272e4b9fdc9e9eb856f1f70e30b9c7c5c53ffef4b56e3022761ed8

See more details on using hashes here.

File details

Details for the file scikit_learn-1.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dcfab6a19b236194af88771d8e6e778a60c3339248ab0018696ebf2b7c8bed4b
MD5 48ea82ffc99a5a238d6a3c5b0a275ba9
BLAKE2b-256 6ab2fd1fd718364999a26161e2b458998f8bac9295e43ce761a5da5654fe1e78

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page