Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis AppVeyor Codecov CircleCI Python27 Python35 PyPi DOI

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 2.7 or >= 3.4)

  • NumPy (>= 1.8.2)

  • SciPy (>= 0.13.3)

Scikit-learn 0.20 is the last version to support Python2.7. Scikit-learn 0.21 and later will require Python 3.5 or newer.

For running the examples Matplotlib >= 1.4 is required. A few examples require scikit-image >= 0.11.3, a few examples require pandas >= 0.17.1 and a few example require joblib >= 0.11.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Setting up a development environment

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 3.3.0 installed):

pytest sklearn

See the web page http://scikit-learn.org/dev/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: http://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.20.2.tar.gz (10.3 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.20.2-cp37-cp37m-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

scikit_learn-0.20.2-cp37-cp37m-win32.whl (4.3 MB view details)

Uploaded CPython 3.7m Windows x86

scikit_learn-0.20.2-cp37-cp37m-manylinux1_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.20.2-cp37-cp37m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.20.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.20.2-cp36-cp36m-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

scikit_learn-0.20.2-cp36-cp36m-win32.whl (4.3 MB view details)

Uploaded CPython 3.6m Windows x86

scikit_learn-0.20.2-cp36-cp36m-manylinux1_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.20.2-cp36-cp36m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.20.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.20.2-cp35-cp35m-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.5m Windows x86-64

scikit_learn-0.20.2-cp35-cp35m-win32.whl (4.3 MB view details)

Uploaded CPython 3.5m Windows x86

scikit_learn-0.20.2-cp35-cp35m-manylinux1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.20.2-cp35-cp35m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.20.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.20.2-cp34-cp34m-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.4m Windows x86-64

scikit_learn-0.20.2-cp34-cp34m-win32.whl (4.4 MB view details)

Uploaded CPython 3.4m Windows x86

scikit_learn-0.20.2-cp34-cp34m-manylinux1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.20.2-cp34-cp34m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.20.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.20.2-cp27-cp27mu-manylinux1_x86_64.whl (5.5 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.20.2-cp27-cp27mu-manylinux1_i686.whl (5.0 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.20.2-cp27-cp27m-win_amd64.whl (4.9 MB view details)

Uploaded CPython 2.7m Windows x86-64

scikit_learn-0.20.2-cp27-cp27m-win32.whl (4.5 MB view details)

Uploaded CPython 2.7m Windows x86

scikit_learn-0.20.2-cp27-cp27m-manylinux1_x86_64.whl (5.5 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.20.2-cp27-cp27m-manylinux1_i686.whl (5.0 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.20.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (8.3 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file scikit-learn-0.20.2.tar.gz.

File metadata

  • Download URL: scikit-learn-0.20.2.tar.gz
  • Upload date:
  • Size: 10.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit-learn-0.20.2.tar.gz
Algorithm Hash digest
SHA256 bc5bc7c7ee2572a1edcb51698a6caf11fae554194aaab9a38105d9ec419f29e6
MD5 f1c25c4ed650589c887edb0434af8a1b
BLAKE2b-256 490e8312ac2d7f38537361b943c8cde4b16dadcc9389760bb855323b67bac091

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a4f14c4327d2e44567bfb3a0bee8c55470f820bc9a67af3faf200abd8ed79bf2
MD5 b9e246210952ed9531ab9a42f31ffbea
BLAKE2b-256 d16c6ddb21e203ff95d7080aeee2105b4f6610a02483e00d4ac950f3630969c9

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3116299d392bd1d054655fa2a740e7854de87f1d573fa85503e64494e52ac795
MD5 fafc38b898b261180e6dae3c1443533f
BLAKE2b-256 fbda76b31f3e3d1b9043e62990a3f8a897b0c20a09a12957663623e7dff365a4

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 27b48cabacce677a205e6bcda1f32bdc968fbf40cd2aa0a4f52852f6997fce51
MD5 5b765aaccd91ef672d7b75045df23e8e
BLAKE2b-256 90de6c4c572d39db91104a31e5b1559df4712f241cdf3f6206f49954adaa942c

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a4d1e535c75881f668010e6e53dfeb89dd50db85b05c5c45af1991c8b832d757
MD5 2c9295f8cce8e6535757526d6efc46de
BLAKE2b-256 bb1eecebd6ac6c182cc6992cd71d96aae71586c575b51c17ccb70b83481c10b5

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2c51826b9daa87d7d356bebd39f8665f7c32e90e3b21cbe853d6c7f0d6b0d23b
MD5 fa025395fc139b0cc41509dc9472ec3b
BLAKE2b-256 110fe2279fee7f9834c63b24fe64515412fd21dd81e82adcf6c79dcc93bb8e6a

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bc5c750d548795def79576533f8f0f065915f17f48d6e443afce2a111f713747
MD5 4e51b74691c378ac43db11eb2c9d2f41
BLAKE2b-256 c11c8fa5aefe23a2fc254e9faadc10a30052c63d92f05fb59127ff0e65e4171c

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 fcca54733e692fe03b8584f7d4b9344f4b6e3a74f5b326c6e5f5e9d2504bdce7
MD5 09a09198784ac21f90a7c7a35566d0a4
BLAKE2b-256 eec8c89ebdc0d7dbba6e6fd222daabd257da3c28a967dd7c352d4272b2e1cef6

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 eb7ddbdf33eb822fdc916819b0ab7009d954eb43c3a78e7dd2ec5455e074922a
MD5 4e7c74954fb3811d735b2c8705924d36
BLAKE2b-256 0d3ab92670f5c368c20329ecc4c255993fae7934564d485c3ed7ea7b8da7f741

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 621e2c91f9afde06e9295d128cb15cb6fc77dc00719393e9ec9d47119895b0d4
MD5 579ff858a0b9cf956cff8ab11f1c4733
BLAKE2b-256 84c28e965fb51b5468601e05c11c81e8985b2138e8b68b069382ccabd1e4ac5b

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ab2919aca84f1ac6ef60a482148eec0944364ab1832e63f28679b16f9ef279c8
MD5 17f182273d126b5ff70363f08556d62b
BLAKE2b-256 cb5fdfa0a118b8a503e45cd2cf48acb9cf1de8deaf06a3cef1b1c19bd5cbbc45

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 80e2276d4869d302e84b7c03b5bac4a67f6cd331162e62ae775a3e5855441a60
MD5 f596704a2d84f95ab95684e6ebe8f146
BLAKE2b-256 639046872c58db4a924b794921dc6790f426ffaaf19feca9b5023d396963f175

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 0d03aaf19a25e59edac3099cda6879ba05129f0fa1e152e23b728ccd36104f57
MD5 d7ec0b3006145e84dfb3257eade1d52d
BLAKE2b-256 1281661bbccd00ae721ce06e9cb0c2aa1cd7077167a2e740341ed2ae2c7252b9

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ed537844348402ed53420187b3a6948c576986d0b2811a987a49613b6a26f29e
MD5 67f6fcfee57bd0d93a9134e7ccbf189e
BLAKE2b-256 18d9bea927c86bf78d583d517f24cbc87606cb333bfb3a5c99cb85b547305f0f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b0f79d5ff74f3c68a4198ad5b4dfa891326b5ce272dd064d11d572b25aae5b43
MD5 06e5e6da87412cdb72da5df2cb338feb
BLAKE2b-256 011d2019c9596fe0ccec39905c16e01562b39597a583334087ce272b9573f9b5

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 05d061606657af85365b5f71484e3362d924429edde17a90068960843ad597f5
MD5 5093c8056db5924f4a4500f00b4bf457
BLAKE2b-256 2a548f0b509226fad99c973ce7e81399e7d59e3decf4c57cb04fd4814dc7bd43

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp34-cp34m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp34-cp34m-win_amd64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.4m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 071317afbb5c67fa493635376ddd724b414290255cbf6947c1155846956e93f7
MD5 e92f911e8d614a2083ba5f3036f6c148
BLAKE2b-256 d136e996e353610f1b5355aaa99913ec9b9986c7461f9035e997f3279c3192f8

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp34-cp34m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp34-cp34m-win32.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.4m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 3771861abe1fd1b2bbeaec7ba8cfca58fdedd75d790f099960e5332af9d1ff7a
MD5 a174313123f99d1bb0138440145a0607
BLAKE2b-256 543ef5db27c699a6feb66868d8e090cb73b22e795fdf50217536149448bd1e67

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d3b4f791d2645fe936579d61f1ff9b5dcf0c8f50db7f0245ca8f16407d7a5a46
MD5 8e6d2179e421ed7b6c8b8856f3948528
BLAKE2b-256 385a4b1c9c56cfcdc727d977d6698de10b749a8e0f487c519125d9eecd9613ed

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 87ea9ace7fe811638dfc39b850b60887509b8bfc93c4006d5552fa066d04ddc7
MD5 df7e52fb45a9777862d8c8ca317667ae
BLAKE2b-256 3fce35ea1374bacc559b8007f68ea585b4a4bce196e7d21b6d3dd8ca433701ad

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 473ba7d9a5eaec47909ee83d74b4a3be47a44505c5189d2cab67c0418cd030f1
MD5 c88fd9f3ac2a21429d2021027e877fa0
BLAKE2b-256 3ac40c4d7f9fbaa1f018e4e63265831bbc83bdff34f0c95f6cd9fbda6b2e9c25

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 645865462c383e5faad473b93145a8aee97d839c9ad1fd7a17ae54ec8256d42b
MD5 14d9b413424004aa8fa1c43e9b2855ca
BLAKE2b-256 9e29bbf3414ba3d03cf1f8d8516e56d69e44ec0ad3fc79a3713b1c6809070e7d

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a7b3c24e193e8c6eaeac075b5d0bb0a7fea478aa2e4b991f6a7b030fc4fd410d
MD5 0f1fe390ae41ade4b9351a262ec4cdef
BLAKE2b-256 8983d22ee6791fb645699dd6192ff8bd8fe826f0179981f7b83c3b715cec7f7a

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 84d2cfe0dee3c22b26364266d69850e0eb406d99714045929875032f91d3c918
MD5 e1c51f802bd3e9be062fe7b8ae71e378
BLAKE2b-256 0cdfa64b564f1ba95c7af5f8d6bac3b6fb305a418a6bb14db914cdcbcf4970ae

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp27-cp27m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 24eccb0ff31f84e88e00936c09197735ef1dcabd370aacb10e55dbc8ee464a78
MD5 abcc0df808daa8687d716b5958242ec3
BLAKE2b-256 4b4c08fe2ff9364e0ec793a3c93ebe9471bf6e37c53c0fc64e9ce22a2540d1d1

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dac0cd9fdd8ac6dd6108a10558e2e0ca1b411b8ea0a3165641f9ab0b4322df4e
MD5 9af52d5d0c7e9d7000f102a004ab326a
BLAKE2b-256 fa5f1b39ee10c0068b7d58d18fa42b943a90c36a026aae8b71734ea8bfcd17c4

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.2-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for scikit_learn-0.20.2-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1665ea0d4b75ef24f5f2a9d1527b7296eeabcbe3a1329791c954541e2ebde5a2
MD5 594854cda4639e19bc026c2af04c024b
BLAKE2b-256 4fac576a2da0581737b1b70091273897f05c395c53662ba8ba032bd9b888c574

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c68969c30b3b2c1fe07c1376110928eade61da4fc29c24c9f1a89435a7d08abe
MD5 6600eb885788bc9a7d9eb2b90acbda65
BLAKE2b-256 2ac9ed5b9d2fa5389ac32160c436a8c57127b965ca93466ecab97df6c6fc5de3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page