Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure Travis Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI

doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.7)

  • NumPy (>= 1.14.6)

  • SciPy (>= 1.1.0)

  • joblib (>= 0.11)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 0.23 and later require Python 3.6 or newer. scikit-learn 1.0 and later require Python 3.7 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 2.2.2). For running the examples Matplotlib >= 2.2.2 is required. A few examples require scikit-image >= 0.14.5, a few examples require pandas >= 0.25.0, some examples require seaborn >= 0.9.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.0.1 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.0.tar.gz (7.8 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.0-cp39-cp39-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.9Windows x86-64

scikit_learn-1.0-cp39-cp39-win32.whl (6.4 MB view details)

Uploaded CPython 3.9Windows x86

scikit_learn-1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

scikit_learn-1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64

scikit_learn-1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (23.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ i686

scikit_learn-1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ x86-64

scikit_learn-1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (19.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ i686

scikit_learn-1.0-cp39-cp39-macosx_10_13_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9macOS 10.13+ x86-64

scikit_learn-1.0-cp38-cp38-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.8Windows x86-64

scikit_learn-1.0-cp38-cp38-win32.whl (6.4 MB view details)

Uploaded CPython 3.8Windows x86

scikit_learn-1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

scikit_learn-1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (25.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

scikit_learn-1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (24.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686

scikit_learn-1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ x86-64

scikit_learn-1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (20.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ i686

scikit_learn-1.0-cp38-cp38-macosx_10_13_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.8macOS 10.13+ x86-64

scikit_learn-1.0-cp37-cp37m-win_amd64.whl (7.1 MB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_learn-1.0-cp37-cp37m-win32.whl (6.4 MB view details)

Uploaded CPython 3.7mWindows x86

scikit_learn-1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (24.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

scikit_learn-1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

scikit_learn-1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (21.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ i686

scikit_learn-1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.5+ x86-64

scikit_learn-1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (19.7 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.5+ i686

scikit_learn-1.0-cp37-cp37m-macosx_10_13_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.7mmacOS 10.13+ x86-64

File details

Details for the file scikit-learn-1.0.tar.gz.

File metadata

  • Download URL: scikit-learn-1.0.tar.gz
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit-learn-1.0.tar.gz
Algorithm Hash digest
SHA256 776800194e757cd212b47cd05907e0eb67a554ad333fe76776060dbb729e3427
MD5 ec88340c4decd44c11bf6066ab90c82c
BLAKE2b-256 e14d15c3542a17eebf61e48bd71dc55b5f3b5031f1cd0dc4aad1ff9ac9651e49

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 eed33b7ca2bf3fdd585339db42838ab0b641952e064564bff6e9a10573ea665c
MD5 3beceb01509915e10afcec2337f518f2
BLAKE2b-256 ad28901f5660be8b4709570cbc5598e43824d5d749b71bb0dd40cb6bb4cec02d

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6a056637f7f9876e4c9db9b5434d340e0c97e25f00c4c04458f0ff906e82488e
MD5 8c51accb5558f25fc9a328434123529a
BLAKE2b-256 19a8a37109ac4dcbccf9cc989b0773fc9e12663fd0aba09390400ed21c6fe769

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f7053801ceb7c51ce674c6a8e37a18fcc221c292f66ef7da84744ecf13b4a0c0
MD5 f3b05fd2217f41633dbb0b4af8af4a1c
BLAKE2b-256 4334c2fa27aac8030958a9a01d804b1fd89c8fcc89d010543d814f61a816bceb

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6d8bdacde73f5f484325179f466ce2011f79360e9a152100179c3dafb88f2a35
MD5 96253ac4be0a49ab1b3cf2d602dd23be
BLAKE2b-256 f812ee18361ed3edc0013aae63ca346772be0d4e33721b4641e6ad2e4b733f3c

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 af94b89a8f7759603c696b320e86e57f4b2bb4911e02bf2bae33c714ac498fb8
MD5 5eff5125221d1807acbaaf4ff568697c
BLAKE2b-256 e96955f038d4fcf711e286bf0bead4e60ef36e9d462609cbfc116644c5b0df0c

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9d8caf7fa58791b6b26e912e44d5056818b7bb3142bfa7806f54bde47c189078
MD5 fd9bc126b3c56bb8b084f0bc4cafebc7
BLAKE2b-256 6f9e44ca1a138cd933a2cf12ee95d039e03a928933065ba2a8fae9dc45b751e9

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 19.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e35135657b7103a70298cf557e4fad06af97607cb0780d8f44a2f91ca7769458
MD5 a18114f58a0e002639ca9197182d3405
BLAKE2b-256 b6e0be6b662036748667aae4e27f499746f65dce64b773bd2cb41755f1906a76

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 8.0 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 efeac34d0ce6bf9404d268545867cbde9d6ecadd0e9bd7e6b468e5f4e2349875
MD5 489efd1bace307853585bfdb57a97c26
BLAKE2b-256 1a31b5a529f5944ce48ab62aafdabfccef0688e3539799fadf2404f65fbc70e3

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 14bd46639b2149b3ed613adc095511313a0db62ba9fa31117bdcb5c23722e93b
MD5 e03fbc114b25edbcf1dd7d316a197521
BLAKE2b-256 d1bdaf72ee39f8b9ac55c52fbf463b1c2b0a849e29bbbfa0f3447db7178b0504

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c9c329ec195cdea6a4dee3cebdb1602f4e0f69351c63bc58a4812f3c8a9f4f2d
MD5 cc29368d02d91bf67db4333d61b2b2b9
BLAKE2b-256 08975c756db969802a6d836cb09b24ba0dccd04efbc9fabb0c354c5592b2e7ee

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c1f710bba72925aa96e60828df5d2a4872f5d4a4ad7bb4a4c9a6a41c9ce9a198
MD5 1e4ea9512d09efc4607a03d287799123
BLAKE2b-256 b5c1f5e01f19abb3def3c5d849a494b3cc3d8a996fcb61991b96a36e5d121bef

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f8aecb3edc443e5625725ae1ef8f500fa78ce7cb0e864115864bb9f234d18290
MD5 d8abb794ae47e723d6da3423cf83268f
BLAKE2b-256 f21d0cc755ffc011b75ad7027095961a252628c315fd842d89235a3c3c06b2a4

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 83ab0d0447b8de8450c554952a8399791544605caf274fc3c904e247e1584ced
MD5 f1f24381b49c68b945c0c6fa80311aa5
BLAKE2b-256 46b0f251726b5db3cbfbdcbde2cbaa2cdafad7f3e82eaf4a6156a955ac460b78

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 29559c207616604bbaa664bf98eed81b32d9f3d4c975065a206a5e2b268fe784
MD5 4917ec925a95b895efca2f4dac8426c4
BLAKE2b-256 40f9f80b54a49c4c12f23ddd19ea83ca81558aa4c5db0743a86039d45793eb99

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4cb5ccb2b63c617ead48c6d92001273ad1b0e8e2bd4a4857edb58749a88b6d82
MD5 cbe2ac5d4ffb6ec9ceae3980dfb7af6e
BLAKE2b-256 f14eee01f7e6fe7dd1cb469f6acd19acb205300f0db3366f07129123613b7b1a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 121f78d6564000dc5e968394f45aac87981fcaaf2be40cfcd8f07b2baa1e1829
MD5 81f83de5866c3a3bcaf16151f295b11b
BLAKE2b-256 628d0351337523c8c46226dfe22db691db9f3a71fcbe41a859f727dde8a684d4

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9f103cd6d7e15fa537a844c1a85c9beeeee8ec38357287c9efd3ee4bb8354e1d
MD5 15c53e1c8d934147840f2ae41f65922b
BLAKE2b-256 3fa49ac96921dcd7b36467ec7300ab1f9f5c98cb1a96fea35de467deae493c71

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 555f4b4c10d3bef9e3cda63c3b45670a091fb50328fccd54948cd8a7cf887198
MD5 eafa133915d2e61eb617adf79c91c451
BLAKE2b-256 5e1eb232901ed407cd9fa71785811ad2cd6c0c95d5ff70f8be92ca47d3cdf530

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b9f10b85dcd9ce80f738e33f55a32b3a538b47409dc1a59eec30b46ea96759db
MD5 87a864c5b837b9e361f8116bacfd5229
BLAKE2b-256 2051b0bed4991a859463db8e7e9ca6ed9502c7378cbd3f2840654f07d6fc5273

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b1df4d1151dd6d945324583125e6449bb74ec7cd91ffd7f850015cdb75f151b5
MD5 f2d7be9edaba509a594c6f030e9620a2
BLAKE2b-256 24ed02117c343d915cf2e8a1c58aa66e0344fffb44a399365c0721960beb492b

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 56ab58978c7aa181856a42f8f491be953b755105040aeb070ebd6b180896f146
MD5 d24b5ce3f00afcee528b7d6d1b1ada67
BLAKE2b-256 32e5df4355b1eea930ff7128f2a57ddbda3e786c47533f5e3311d83d16a063d6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 190c178028f9073d9f61cd30a19c685993236b9b2df884f16608cbb3ff03800b
MD5 536781d858b23ddab32845fb4e628aa4
BLAKE2b-256 06f0ba9c0ef401e159f4f7d72394282b9a615ce1daa2d59b357ba1b903641043

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 663a6aaad92e5690b03d931f849016c9718beaa654e9a15f08bfcac750241036
MD5 02898ba625b824f72ed5cbd0ed6b156e
BLAKE2b-256 3f4beaff810b2728b0fe93313e5d33feac143611233dfb1e75fd7a5ff9cbc05b

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: scikit_learn-1.0-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e8a6074f7d505bbfd30bcc1c57dc7cb150cc9c021459c2e2729854be1aefb5f7
MD5 d63e43d7d925813ec700d4dd782eea01
BLAKE2b-256 8e54536e97c8107ce93996cc1f35003a84d1e1c11ea5aedb4c0147cc38a58ceb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page