Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure CirrusCI Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • SciPy (>= 1.5.0)

  • joblib (>= 1.1.1)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 3.1.3). For running the examples Matplotlib >= 3.1.3 is required. A few examples require scikit-image >= 0.16.2, a few examples require pandas >= 1.0.5, some examples require seaborn >= 0.9.0 and plotly >= 5.14.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 7.1.2 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.3.0rc1.tar.gz (7.5 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.3.0rc1-cp311-cp311-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_learn-1.3.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.0rc1-cp311-cp311-macosx_12_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scikit_learn-1.3.0rc1-cp311-cp311-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scikit_learn-1.3.0rc1-cp310-cp310-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.3.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.0rc1-cp310-cp310-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.3.0rc1-cp310-cp310-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_learn-1.3.0rc1-cp39-cp39-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.3.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.0rc1-cp39-cp39-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.3.0rc1-cp39-cp39-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scikit_learn-1.3.0rc1-cp38-cp38-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-1.3.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.0rc1-cp38-cp38-macosx_12_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scikit_learn-1.3.0rc1-cp38-cp38-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scikit-learn-1.3.0rc1.tar.gz.

File metadata

  • Download URL: scikit-learn-1.3.0rc1.tar.gz
  • Upload date:
  • Size: 7.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for scikit-learn-1.3.0rc1.tar.gz
Algorithm Hash digest
SHA256 b6e44ab67ea9577ca26502a592948f488282b3c33a3b59d48caf195b6bff40e9
MD5 8fca1adb566eed819b6d88679ed01f51
BLAKE2b-256 09e859396cf3a7328bee2ec86073117218f98efd482a079d12c21b76a7583252

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b0ee3cabcb342ad67feb0a3a09fde809927018f943e44967a2e9b376bce15391
MD5 bc54e45ab1ac1eefb4ccb4b057c564d5
BLAKE2b-256 3b429d69b511e20171d5842b48e80ab78b838ce1706627149309dc38005cf52d

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbc462b72903077ac2de513eddd6be2a8fb90882d1ca8cfff1f9ea0a0df24f92
MD5 4077c488abd987058fb51d840e27635d
BLAKE2b-256 84d4e8ed0fea73e480d5a5dc12b6599f8be8bb9be7ddbc5237bcf36f545fc633

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 772e06c9cceb3c63b5d09a2720b700b77c0b9d8fa91ddc8e8a425693d3997182
MD5 2bbb4ae1181b0519ba72d5dbb2f819a4
BLAKE2b-256 35015b3a4609ef386aceff656f4a6d564795f332d552e8c7c596d748d15aada7

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2a196cfd598daf597f856ccf1cab93a7935184fcab499fae4642003e2c0823ac
MD5 a668a9813e86afde2ba045a23c09f053
BLAKE2b-256 78e3ed9a1acffb35a2f6be97f45b48749398f6c782a4b9a50621530d13024663

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 afa1e6f5b37e29033b0e3711fc61e2270a5b4db2d4023fed420fe302c51f80cd
MD5 04fe0d0950bc766e5ef7124166e1045d
BLAKE2b-256 1380467aaefe22196744a7b456571e202bb3665f7167e580a7de4cb4dc1f3efd

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e78f1652c8f1ba619b9ca68e233b9f5c732aee4bb9edee0d7967d4807adb966b
MD5 e37e8b9a787de5aa29edf189664d96bc
BLAKE2b-256 f0019402e153d04e0bbdb0c488a584fce9971dde2c16b36e51a5965c8d089e88

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 445f8cc6c86ba0334c677ffed177e80571badc2effccedc4f31bbfe5e8f61cc2
MD5 8eafb3b18992ae18b06819099e4b4851
BLAKE2b-256 d3a484a893eead3d873e756739f9200d5af852be0b71fa3344840e53bcd4daa8

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0be3d5457720c89f7804aba2359a93cef408370e67aad2c61690f536c520c58e
MD5 57c700f344dd57db9163395a3f4c3af2
BLAKE2b-256 80ed870af33d8e165ec0a07826ea2a906fab984d0518b24f96df7e42d7100ccb

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 02d5caba3dae33ad93dda70641785fcccd84e2af00d647c514b4e67564db458a
MD5 615cb0099a74a0e2653b154fc7cc64d6
BLAKE2b-256 c8dca5d4fd3d43f3e875b5294178369291d7f0bcd911da6e90ddb32e36b7ea6c

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad4402073ab0bce607659368de956c97be33e8b956d15aa1772e3f80aef1793c
MD5 281f8cf0b6e0c0321aa848a1945ad7a4
BLAKE2b-256 df4904a8dd2c8bd385fd1ee190dcdb81d1ade3cfcf0344c11b70a9ebba2511b7

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 624f5ba8c713a97e6862d4f83cc9574064a878b92f7e3ca08048f8d2e3271664
MD5 75470f90d8f94af6a124b4387eac866f
BLAKE2b-256 f288846201b31d71cd4a37497a9b1357dcfba1662130de3783cc8bcb718b6dda

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f206392f31573179d34db12fdecec39c5ed9bdc973b1933eff2e2cca1b0cff13
MD5 b49c2781cc3674153cd96f9491962f6c
BLAKE2b-256 cbe721ae176fc9276e33cc71594e8926a7170861ed3dde5eff7fea7026d83273

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09251b0442f05045c320a4373687051797f237719ba58919c4c21f170e5928e4
MD5 4a0ad0d11af04e3dbba12e7288ac641d
BLAKE2b-256 6e14b2466f286fa36a66b4d62d71eb1127067f4a1a36e7fbb9d2e9d4fff488ce

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9b4319678259e899747c285e2a47c52ad2bd0afaf48ae7c1cbd91ed939726968
MD5 5cb967729794d991c56a263ff458fdc4
BLAKE2b-256 b36ada991fcd3ebd78b767ea33c16a9cf1d66900dc13c9b801d9f25a5ce1911a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86f1af6fdada53c86de76ee8fd513b69de7fe5f8eacc1b8ee530e7e0c1b5ffa7
MD5 5c1f4763aa1995a5d998618cd6c991ee
BLAKE2b-256 87b377091edbfd43cdc2cf199366cde308d8dd9203c81fddf61ff650c6c729bf

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7a97c8f8678fc060ee6874863046a3aec924f7a3beac89e3d83900c0c03cdd87
MD5 ae5fcf82c295c7d9639823fc2ed9020b
BLAKE2b-256 37fae6e12b616f88697278e5316001d6e3776f7ead9bc56506c9887a4893f8da

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13b767a524bb9830fe6d39c4adb8d4298e5d856c4302ac938f5d1c51c3e68c8b
MD5 53641da935e9dd716db4069063f1f8f7
BLAKE2b-256 56416e591e4d07d8af5f22c46b8a26401dd68261751ff1a6bf18323d3b4de3f3

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e856435d0712a4b9d10feeb41ff2c5f91463e4c4e0eac0312caff0fd1f9ec1a0
MD5 0625e6895ea45adc31d0045311b03cfc
BLAKE2b-256 174b3111e39affd50374ea70e5feafcdbae111ceac951519d08dbcecdf982e63

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ab23681a05c29d84ac44e3d60cd8aa86987be47f84c24fb0d4ce8f2bc9b28c45
MD5 942e140c1db790201934d4825d8910f9
BLAKE2b-256 a14c87e01ccb58664d3129b8804282673329af2514827fa7b9ca27c150cb4ba1

See more details on using hashes here.

File details

Details for the file scikit_learn-1.3.0rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3bc538dc2190dd8b60be7f3403be0bb2588fc95d4f07b0774240f3cd91994570
MD5 0aa7e26e5e5da0e15ea8b3f003444998
BLAKE2b-256 11d3c30b917c2094d09b1dd06b5fb1a58c21d880eb96ad9cd5700b5cecb2d2d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page