Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure Travis Codecov CircleCI PythonVersion PyPi DOI

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.5)

  • NumPy (>= 1.11.0)

  • SciPy (>= 0.17.0)

  • joblib (>= 0.11)

Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 0.21 and later require Python 3.5 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 1.5.1). For running the examples Matplotlib >= 1.5.1 is required. A few examples require scikit-image >= 0.12.3, a few examples require pandas >= 0.18.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 3.3.0 installed):

pytest sklearn

See the web page http://scikit-learn.org/dev/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: http://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.22.2.post1.tar.gz (6.9 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.22.2.post1-cp38-cp38-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.8Windows x86-64

scikit_learn-0.22.2.post1-cp38-cp38-win32.whl (5.7 MB view details)

Uploaded CPython 3.8Windows x86

scikit_learn-0.22.2.post1-cp38-cp38-manylinux1_i686.whl (6.3 MB view details)

Uploaded CPython 3.8

scikit_learn-0.22.2.post1-cp38-cp38-macosx_10_9_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_learn-0.22.2.post1-cp37-cp37m-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_learn-0.22.2.post1-cp37-cp37m-win32.whl (5.7 MB view details)

Uploaded CPython 3.7mWindows x86

scikit_learn-0.22.2.post1-cp37-cp37m-manylinux1_i686.whl (6.3 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.22.2.post1-cp37-cp37m-macosx_10_9_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_learn-0.22.2.post1-cp36-cp36m-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_learn-0.22.2.post1-cp36-cp36m-win32.whl (5.7 MB view details)

Uploaded CPython 3.6mWindows x86

scikit_learn-0.22.2.post1-cp36-cp36m-manylinux1_i686.whl (6.3 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.22.2.post1-cp36-cp36m-macosx_10_9_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

scikit_learn-0.22.2.post1-cp35-cp35m-win_amd64.whl (6.2 MB view details)

Uploaded CPython 3.5mWindows x86-64

scikit_learn-0.22.2.post1-cp35-cp35m-win32.whl (5.5 MB view details)

Uploaded CPython 3.5mWindows x86

scikit_learn-0.22.2.post1-cp35-cp35m-manylinux1_i686.whl (6.3 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.22.2.post1-cp35-cp35m-macosx_10_9_intel.whl (7.0 MB view details)

Uploaded CPython 3.5mmacOS 10.9+ Intel (x86-64, i386)

File details

Details for the file scikit-learn-0.22.2.post1.tar.gz.

File metadata

  • Download URL: scikit-learn-0.22.2.post1.tar.gz
  • Upload date:
  • Size: 6.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit-learn-0.22.2.post1.tar.gz
Algorithm Hash digest
SHA256 57538d138ba54407d21e27c306735cbd42a6aae0df6a5a30c7a6edde46b0017d
MD5 4c8d2ab712bd03e01bc55291e1f7bc6e
BLAKE2b-256 e4408bc77d8f536be0a892b37fff19fd81f15935e24724303480f85238ec7f22

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 672ea38eb59b739a8907ec063642b486bcb5a2073dda5b72b7983eeaf1fd67c1
MD5 884b318e33f605f052b1668725d589cc
BLAKE2b-256 f9041f6644aeecec1a05c565cb730c3ede0f518cdb5f9b4978e2a1819f531d43

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 1bf45e62799b6938357cfce19f72e3751448c4b27010e4f98553da669b5bbd86
MD5 b910f3c431a172756485ed1707e5a39d
BLAKE2b-256 ad2e726ec358864914a6ece454ca95387b321defacc169199769fa2c8f76d736

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 83fc104a799cb340054e485c25dfeee712b36f5638fb374eba45a9db490f16ff
MD5 a08f9103125b4313e5ce03e2a2036679
BLAKE2b-256 3fde5d5edccebf39c4bd4e6c153647939aaf126f725f585bb1c06ef46054ff89

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ea91a70a992ada395efc3d510cf011dc2d99dc9037bb38cd1cb00e14745005f5
MD5 b6fefe2f55a00175260a984210033297
BLAKE2b-256 fd4b8d4617b6104804b0a48434003c7c74c1ef6c951473091fa77e8f8c7a4c73

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d1bb83d6c51a81193d8a6b5f31930e2959c0e1019d49bdd03f54163735dae4b
MD5 991eee7bc2128ec9ef289348c8b5b332
BLAKE2b-256 53df0a7c61d70a81ab343c2c56b1d50bda4f8d82c926b45f854becf28e558094

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3f4d8eea3531d3eaf613fa33f711113dfff6021d57a49c9d319af4afb46f72f0
MD5 fe30744b313f3553e3bc12728e81e9d2
BLAKE2b-256 1fe3e400f94e368a7b0d2432a88ab671a7f27c9159f177bbed68f7cce83b5848

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5b722e8bb708f254af028dc2da86d23df5371cba57e24f889b672e7b15423caa
MD5 a77411b3c0192a21b22f6af8f6e354f8
BLAKE2b-256 3ab63ce95d31f4713c89b63aa0f251914c08fab302144676f8506f6a18ab641f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 84e759a766c315deb5c85139ff879edbb0aabcddb9358acf499564ed1c21e337
MD5 28e8d8e4f2904424b2424465c41aea68
BLAKE2b-256 41b6126263db075fbcc79107749f906ec1c7639f69d2d017807c6574792e517e

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ffce8abfdcd459e72e5b91727b247b401b22253cbd18d251f842a60e26262d6f
MD5 ca447556ecf7758d84dc7ec0713e3b69
BLAKE2b-256 98a23d9427aa154136e4a8131227b6ed4d1315289f487d53514f4e916b869951

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eb4c9f0019abb374a2e55150f070a333c8f990b850d1eb4dfc2765fc317ffc7c
MD5 99af4669872a0347971ed7dde2ba8c9b
BLAKE2b-256 645723176044d9371e1af286176fd61cf7f74ed46d0b99122624ab93b3f32715

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a7f8aa93f61aaad080b29a9018db93ded0586692c03ddf2122e47dd1d3a14e1b
MD5 f561dc77352cccd30ab40b4e422564f1
BLAKE2b-256 5949a6e1f2b9f94e4fca0c04f166db5c713c6d0a81c2f039fb0c66e770bbbcb1

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8416150ab505f1813da02cdbdd9f367b05bfc75cf251235015bb09f8674358a0
MD5 aa3e1fa3efe16184aff14fa5369abf1a
BLAKE2b-256 d21178d76227392d91e80f970c85dd98a574b1a7617b7aa463a893ab32c0b3fa

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6043e2c4ccfc68328c331b0fc19691be8fb02bd76d694704843a23ad651de902
MD5 9ea46375292288b824ba1bddcf24b501
BLAKE2b-256 5ed8312e03adf4c78663e17d802fe2440072376fee46cada1404f1727ed77a32

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 de9933297f8659ee3bb330eafdd80d74cd73d5dab39a9026b65a4156bc479063
MD5 1b99e12709c9f909be2dff0efc6434fc
BLAKE2b-256 4dd0e7cc6425c906015ddc4c5c97490eac46ee708e443e23b33ce318b38f499e

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73207dca6e70f8f611f28add185cf3a793c8232a1722f21d82259560dc35cd50
MD5 2ecb502b54443c9c8a8324703b4a7fdf
BLAKE2b-256 0ce1b640df8f5cc31842953ab26b50bb4735ed3ec92712c2b47ceb712a96a926

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 349ba3d837fb3f7cb2b91486c43713e4b7de17f9e852f165049b1b7ac2f81478
MD5 55b7041a73a1c9052a7abdd66e9e5d31
BLAKE2b-256 0e1c6156a0941d512dabfe5f53eed3665c6b4711fe7a91b5e9cc362a4e41b9e9

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 ddd3bf82977908ff69303115dd5697606e669d8a7eafd7d83bb153ef9e11bd5e
MD5 edf61ff5ec01f92354ef4c266406952f
BLAKE2b-256 2943d9b1c01a8649292099219821bdb823d535f0757e0cdaf071bed6f142cb31

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4990f0e166292d2a0f0ee528233723bcfd238bfdb3ec2512a9e27f5695362f35
MD5 971b659723e01393e0162bd0867096cf
BLAKE2b-256 42ec32310181e803f5d22e0dd33eb18924489b2f8d08cf5b6e116a93a6a5d1c6

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8ed66ab27b3d68e57bb1f315fc35e595a5c4a1f108c3420943de4d18fc40e615
MD5 fb332e5e9c336a8fc45cb77a1540f9cc
BLAKE2b-256 fca022752b59c903b9db5dd7b795ed30b6d7f23b291be8591fc51b6a39bbf6e2

See more details on using hashes here.

File details

Details for the file scikit_learn-0.22.2.post1-cp35-cp35m-macosx_10_9_intel.whl.

File metadata

  • Download URL: scikit_learn-0.22.2.post1-cp35-cp35m-macosx_10_9_intel.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.5m, macOS 10.9+ Intel (x86-64, i386)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for scikit_learn-0.22.2.post1-cp35-cp35m-macosx_10_9_intel.whl
Algorithm Hash digest
SHA256 267ad874b54c67b479c3b45eb132ef4a56ab2b27963410624a413a4e2a3fc388
MD5 5b18f735fe1804318135a4b5bac194f9
BLAKE2b-256 48a544959b283ab5ebdeab93109564e8cc3ac076e5fa0dc75604dad774bb5f2f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page