Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure Travis Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.7)

  • NumPy (>= 1.14.6)

  • SciPy (>= 1.1.0)

  • joblib (>= 0.11)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 0.23 and later require Python 3.6 or newer. scikit-learn 1.0 and later require Python 3.7 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 2.2.3). For running the examples Matplotlib >= 2.2.3 is required. A few examples require scikit-image >= 0.14.5, a few examples require pandas >= 0.25.0, some examples require seaborn >= 0.9.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.0.1 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.0.2.tar.gz (6.7 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.0.2-cp310-cp310-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.0.2-cp310-cp310-macosx_12_0_arm64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.0.2-cp310-cp310-macosx_10_13_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

scikit_learn-1.0.2-cp39-cp39-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.0.2-cp39-cp39-win32.whl (6.4 MB view details)

Uploaded CPython 3.9 Windows x86

scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (25.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

scikit_learn-1.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (23.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

scikit_learn-1.0.2-cp39-cp39-macosx_12_0_arm64.whl (6.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.0.2-cp39-cp39-macosx_10_13_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

scikit_learn-1.0.2-cp38-cp38-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-1.0.2-cp38-cp38-win32.whl (6.4 MB view details)

Uploaded CPython 3.8 Windows x86

scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (25.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scikit_learn-1.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (25.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

scikit_learn-1.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (24.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

scikit_learn-1.0.2-cp38-cp38-macosx_12_0_arm64.whl (6.9 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scikit_learn-1.0.2-cp38-cp38-macosx_10_13_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

scikit_learn-1.0.2-cp37-cp37m-win_amd64.whl (7.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

scikit_learn-1.0.2-cp37-cp37m-win32.whl (6.4 MB view details)

Uploaded CPython 3.7m Windows x86

scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (24.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (23.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (24.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

scikit_learn-1.0.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

scikit_learn-1.0.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (21.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

scikit_learn-1.0.2-cp37-cp37m-macosx_10_13_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file scikit-learn-1.0.2.tar.gz.

File metadata

  • Download URL: scikit-learn-1.0.2.tar.gz
  • Upload date:
  • Size: 6.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit-learn-1.0.2.tar.gz
Algorithm Hash digest
SHA256 b5870959a5484b614f26d31ca4c17524b1b0317522199dc985c3b4256e030767
MD5 1b81ba4e180a885220d5e45f51b508ed
BLAKE2b-256 7544074b780d8ac0b0899937e9b8ba6d5d8873a71b99aa915219251ef85a8890

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d93d4c28370aea8a7cbf6015e8a669cd5d69f856cc2aa44e7a590fb805bb5583
MD5 4bd34f7d4fc12e44b764c03c19a2c836
BLAKE2b-256 92e275a70f7e130c3b9573f0e1cf74741483fa99e77b248895e71ec7a90aac7a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9aac97e57c196206179f674f09bc6bffcd0284e2ba95b7fe0b402ac3f986023
MD5 058bd060e5b7265cd71d7f7acbe7b8ed
BLAKE2b-256 832b9625dd17ba7247b46c2d26b433451a82ca864b4e83bba0e7190f86537a39

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f14517e174bd7332f1cca2c959e704696a5e0ba246eb8763e6c24876d8710049
MD5 37680de955c2d93e0c591615af7d87e5
BLAKE2b-256 32886f47f4e5b8a26a5db480949998715fef69369767a820f2337e0e46ba9524

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp310-cp310-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.10, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 75307d9ea39236cad7eea87143155eea24d48f93f3a2f9389c817f7019f00705
MD5 0f0312f9e28404eae29b5f3ed71a0c4b
BLAKE2b-256 44295777be1436772dc3e352fa7a05dc86d067b67b10749e9a17f5eea9273793

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp310-cp310-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 8.0 MB
  • Tags: CPython 3.10, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 da3c84694ff693b5b3194d8752ccf935a665b8b5edc33a283122f4273ca3e687
MD5 7d41a4125c3bd22b10f7bbf4d7121867
BLAKE2b-256 7951e414b6690a41ea5e54b368bfee75dc3d77a6916f9f3032f977c05aafc8f1

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b54a62c6e318ddbfa7d22c383466d38d2ee770ebdb5ddb668d56a099f6eaf75f
MD5 f2a9969bd74cc51ccbbb70a5c023e19f
BLAKE2b-256 0b5ff9a191519f6daf2c268256511c38e0cf638ff8e308bcadaf96a69e3e85af

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e174242caecb11e4abf169342641778f68e1bfaba80cd18acd6bc84286b9a534
MD5 437e1d8a422f86c3acf6f4b0749cfe08
BLAKE2b-256 aed7c9242c9f44fecb6933840ec7dea7716e3323208010924fd84764b620aa94

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff746a69ff2ef25f62b36338c615dd15954ddc3ab8e73530237dd73235e76d62
MD5 9981961d862115cb3810d4432d52e3aa
BLAKE2b-256 57aa483fbe6b5314bce2d49801e6cec1f2139a9c220d0d51494788fff47233b3

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fa38a1b9b38ae1fad2863eff5e0d69608567453fdfc850c992e6e47eb764e846
MD5 18e3f328f2c04aa9b4c217a3e943f4ca
BLAKE2b-256 242dfaba6fccb41b1d0eae2055a440c6ccd8091388e7c43a08ecb3803a760ac3

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 80095a1e4b93bd33261ef03b9bc86d6db649f988ea4dbcf7110d0cded8d7213d
MD5 2b7f4d47eb84ca3a1986153977ddcf3f
BLAKE2b-256 595df2a0ad9f04389b754c59fb48cf11d015438ac145f87a1b5a5f4d9e77bb70

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 55f2f3a8414e14fbee03782f9fe16cca0f141d639d2b1c1a36779fa069e1db57
MD5 6427ac5eb20179694f802d712bc173e9
BLAKE2b-256 3941f10366339f9ecf2c2859ce937d47dae6ab38e354065e361a20ec94501a47

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 eabceab574f471de0b0eb3f2ecf2eee9f10b3106570481d007ed1c84ebf6d6a1
MD5 5038f6c7beb24367df3d66e44b8df0d2
BLAKE2b-256 bf27ce590fc9dfdb8f045baeac6149a83d828dc27712e0908b3cdebbbfb31a91

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 7a93c1292799620df90348800d5ac06f3794c1316ca247525fa31169f6d25855
MD5 3ca941c8186db263cf1f80c078c256a8
BLAKE2b-256 1e7b0d63d1481e40939b7f25107d606c974d15b42c22d40fb842679b91e19741

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 8.0 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a90b60048f9ffdd962d2ad2fb16367a87ac34d76e02550968719eb7b5716fd10
MD5 786684b8b656c176caac09d5816baf4e
BLAKE2b-256 aa67b29f1c3675de3d687929fdd3497b2c9546410f4d50ea46e80d52deb1545a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7626a34eabbf370a638f32d1a3ad50526844ba58d63e3ab81ba91e2a7c6d037e
MD5 928c947f204e96226bd8c3baa6a321bb
BLAKE2b-256 50f52bfd87943a29870bdbe00346c9f3b0545dd7a188201297a33189f866f04e

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a999c9f02ff9570c783069f1074f06fe7386ec65b84c983db5aeb8144356a355
MD5 b7e5fc12912893c3fb65017df00d2d9a
BLAKE2b-256 a441d3c747b3542bc4ad3c68e8e042f791abf78365eb90b25742c33679a361a1

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc3744dabc56b50bec73624aeca02e0def06b03cb287de26836e730659c5d29c
MD5 19091ad6103a4b869db1baf7ff13c4de
BLAKE2b-256 40d3206905d836cd496c1f78a15ef92a0f0477d74113b4f349342bf31dfd62ca

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b1391d1a6e2268485a63c3073111fe3ba6ec5145fc957481cfd0652be571226d
MD5 63e682c4c65033735d72e30a4b72cbca
BLAKE2b-256 6af4a655d7421579783fc49d19a5b28cac994cff998268f7353029e8ea02ff78

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5cb33fe1dc6f73dc19e67b264dbb5dde2a0539b986435fdd78ed978c14654830
MD5 17f9967592594517f6c0747f160d645e
BLAKE2b-256 0d18883dd0dc906a30ddd06be9412f2c84776900e6091497f70e78346ee7851f

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 285db0352e635b9e3392b0b426bc48c3b485512d3b4ac3c7a44ec2a2ba061e66
MD5 3a339a1f88bcd55c6974d958a108555d
BLAKE2b-256 7e2c27fcd754e40eb176f4ea261042194a8a39b4cebb6f4cf8557c41014019dc

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7d6b2475f1c23a698b48515217eb26b45a6598c7b1840ba23b3c5acece658dbb
MD5 ad241f9f052565056464b9ecd3bd4ec2
BLAKE2b-256 7ed4e7087c1083c051c67707005ee65bb5c9c84761cedc09dea2c670c5559e2b

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp38-cp38-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.8, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9369b030e155f8188743eb4893ac17a27f81d28a884af460870c7c072f114243
MD5 77d32482b7d7bea2d2c0d960504194f9
BLAKE2b-256 8bf1e9097e4dd7ffc26e0e578e598e9dade3e5f16eb80058ca6fad28fbebccaa

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ff3fa8ea0e09e38677762afc6e14cad77b5e125b0ea70c9bba1992f02c93b028
MD5 b7a2426d01e228daf1968ba77942a28e
BLAKE2b-256 4495bf3bdfd6b8d93b79728b3193aba7e1c44f5518b648ed72c4ceb6f5d7d670

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 46f431ec59dead665e1370314dbebc99ead05e1c0a9df42f22d6a0e00044820f
MD5 bcaa21b1857247673131b9111ef1f4f1
BLAKE2b-256 9d200ffe8665a44bce7616bd33d4368a198fecad3b226bcafa38c63ef0f6286f

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2f3b453e0b149898577e301d27e098dfe1a36943f7bb0ad704d1e548efc3b448
MD5 6d81ccd1ac4d30ad41e99e065d395230
BLAKE2b-256 3ceda6f6f63a80b4d97d2bba2902a5dda1829cefbe870fce16c1b29f512cbfa6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16455ace947d8d9e5391435c2977178d0ff03a261571e67f627c8fee0f9d431a
MD5 1f6457073cce744eea9ba02ab20bd898
BLAKE2b-256 bd05e561bc99a615b5c099c7a9355409e5e57c525a108f1c2e156abb005b90a6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 08ef968f6b72033c16c479c966bf37ccd49b06ea91b765e1cc27afefe723920b
MD5 f3f347c8c9cf9b79a1a657e905d1a647
BLAKE2b-256 1cf5857fbab45c0e2bbb4297674bd12a894be0663ca09ba55fa6624f376bad0f

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 158faf30684c92a78e12da19c73feff9641a928a8024b4fa5ec11d583f3d8a87
MD5 c283230a2128a21129dce748648dce12
BLAKE2b-256 97d676cefbcfbec2a5ea7d0483028818f234f51bfceece0435b2664bb950dc73

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 245c9b5a67445f6f044411e16a93a554edc1efdcce94d3fc0bc6a4b9ac30b752
MD5 c8617292d8c6e75ae85d38d8faeaa7c2
BLAKE2b-256 6d0975d4dccea54627920db3cfeb5183ba9f0be2c9b18c4ad00ca6621d009d4f

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a053a6a527c87c5c4fa7bf1ab2556fa16d8345cf99b6c5a19030a4a7cd8fd2c0
MD5 f08b1d2eaeff0d6b6a897ed174f4717e
BLAKE2b-256 51b81d6dfa4b6175d5380817777b1836ad65b1fb2bcc635af94ae1a7800a6059

See more details on using hashes here.

File details

Details for the file scikit_learn-1.0.2-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: scikit_learn-1.0.2-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.2-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 85260fb430b795d806251dd3bb05e6f48cdc777ac31f2bcf2bc8bbed3270a8f5
MD5 418e8ef1aa92247dc52a0295b653e3e5
BLAKE2b-256 f874273c03e5a3b9aa0881812dd36c3f5a25f92177c96219d1d110ed96673a34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page