Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis AppVeyor Codecov CircleCI Python27 Python35 PyPi DOI

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 2.7 or >= 3.4)

  • NumPy (>= 1.8.2)

  • SciPy (>= 0.13.3)

Scikit-learn 0.20 is the last version to support Python2.7. Scikit-learn 0.21 and later will require Python 3.5 or newer.

For running the examples Matplotlib >= 1.4 is required. A few examples require scikit-image >= 0.11.3, a few examples require pandas >= 0.17.1 and a few example require joblib >= 0.11.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Setting up a development environment

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 3.3.0 installed):

pytest sklearn

See the web page http://scikit-learn.org/dev/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: http://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.20.1.tar.gz (9.7 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.20.1-cp37-cp37m-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

scikit_learn-0.20.1-cp37-cp37m-win32.whl (4.3 MB view details)

Uploaded CPython 3.7m Windows x86

scikit_learn-0.20.1-cp37-cp37m-manylinux1_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.20.1-cp37-cp37m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.20.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.20.1-cp36-cp36m-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

scikit_learn-0.20.1-cp36-cp36m-win32.whl (4.3 MB view details)

Uploaded CPython 3.6m Windows x86

scikit_learn-0.20.1-cp36-cp36m-manylinux1_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.20.1-cp36-cp36m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.20.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.20.1-cp35-cp35m-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.5m Windows x86-64

scikit_learn-0.20.1-cp35-cp35m-win32.whl (4.3 MB view details)

Uploaded CPython 3.5m Windows x86

scikit_learn-0.20.1-cp35-cp35m-manylinux1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.20.1-cp35-cp35m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.20.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.20.1-cp34-cp34m-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.4m Windows x86-64

scikit_learn-0.20.1-cp34-cp34m-win32.whl (4.4 MB view details)

Uploaded CPython 3.4m Windows x86

scikit_learn-0.20.1-cp34-cp34m-manylinux1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.20.1-cp34-cp34m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.20.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.20.1-cp27-cp27mu-manylinux1_x86_64.whl (5.5 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.20.1-cp27-cp27mu-manylinux1_i686.whl (5.0 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.20.1-cp27-cp27m-win_amd64.whl (4.9 MB view details)

Uploaded CPython 2.7m Windows x86-64

scikit_learn-0.20.1-cp27-cp27m-win32.whl (4.5 MB view details)

Uploaded CPython 2.7m Windows x86

scikit_learn-0.20.1-cp27-cp27m-manylinux1_x86_64.whl (5.5 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.20.1-cp27-cp27m-manylinux1_i686.whl (5.0 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.20.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (8.3 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file scikit-learn-0.20.1.tar.gz.

File metadata

  • Download URL: scikit-learn-0.20.1.tar.gz
  • Upload date:
  • Size: 9.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.5

File hashes

Hashes for scikit-learn-0.20.1.tar.gz
Algorithm Hash digest
SHA256 fa1869c18fef812e321b9ed875519daefb3a7ea016ba1392526d231a7994e81c
MD5 8c9a65eb57e7fa173124598df274d2dd
BLAKE2b-256 1a7cda34889e0a58e801675af88bc6e0dd1fcb4b01d26d1b437eb15df85b50a6

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c8482ff66457a1b148973240c0eaa0456b62b8b8e5e26615f7f00ba08cc5c132
MD5 fc8f27727e3068aecba147fd8d9e002b
BLAKE2b-256 74fce3d24a3472e32102f9f667adf05a41fdd5b56893f34464f06c8549684cd5

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3281dd405f15f8647e617062003b229b29dd74e966bfd1c033be720897402c54
MD5 7a1c2065334412df2640af3f73b4aa78
BLAKE2b-256 4bcd5e815a9e5e98bfd4e77dcdd87ae556247c48c1e9539b20798219aa3416c8

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7c4569c7ca504db5cd1f4d8dfca6500bbf6f1d0e25618831f25d9f9ab8b4e33d
MD5 548d47d91b610fdd1bf6551490f0724c
BLAKE2b-256 b03a0802b78f697ae04ba06f49d0ebc6e872f2c470687c3e61ad8ef523e125c3

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 635978ca918da035a60e20d390273803417a1fc691290e93d9d5852a016a2bc3
MD5 2dfc2e55e44377c6fdb8cfccdebb6453
BLAKE2b-256 d6a0de5878c3c540c951185c9f29cea8ddd69857697f30aadba0a40d6ac10625

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 95f892fa68105f6bcce0f206262d3810924f3865abd93927eb41949adb50e538
MD5 b3f31724c94f49275caf168e2a00a0b5
BLAKE2b-256 1bedaa15bb8e0afc2d9e926c003a0f57e2ec8267de212edfb6e3f3c140f107aa

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6aa8b434de69c2507ee2bb874642f7bbfedb0a96c234a9129b8957e109d3bd47
MD5 f4ab35e63571a5baea32fd8ccaafd618
BLAKE2b-256 b29d3e18b1191331d9a4674926fb4625c17de1aae29d371696f38a5e05238e99

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 f231c2d0e397309ef18b62a8adfe914de38e335c6f8fc06a3655d5ae8b524d69
MD5 39bd3464cb0f296a712f30b05cf530fe
BLAKE2b-256 571f6610959fa047cb75f8aa65c7f7beacbadb5f8160b7e93d9de426261bffd4

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fc4d3cff012c1aa2459e5745cdd3df31a30e2ff27dcbfadf1999e16dd8497a6e
MD5 a6396f845c68e76f9fd0d21cfacecbf3
BLAKE2b-256 1026d04320c3edf2d59b1fcd0720b46753d4d603a76e68d8ad10a9b92ab06db2

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 48cef3af610f83460a4419de6c77757fc3b687da4ad39aedcbe3a92c6714b0ae
MD5 eab382a4ff409e7153735df7f50b5df8
BLAKE2b-256 790caf01eabb155bcfa5f8b394458186cb197d33e25208558e1163cae57d8034

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 cc723aa0de67f0398821e3961ce0dcad32f276564c6fff2fc6061cc885a89c9e
MD5 f3e1353b85df7257cee64b3532258f05
BLAKE2b-256 757ce75ca3063e41ff018ac676eb2dbe6470d12aed9dcf4e05146ea3b49a19db

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 c2a1ce4e405ab61857c4dba89aa997522a9098e4cbc383fa95805ae6be8c772e
MD5 c58bb8c0f3a8b3efa2d09dfaee864390
BLAKE2b-256 92ef5d714e7cf0270c0b852d3d51c76aa872837bbc1b7d67d7d53f3127abcfbf

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 cfb3ffdc7098b7328b120bc5819d81045c59e0392e7221441b0ac50ed7853a73
MD5 47c7e567f2b5a7c3f767d5c3bac529c1
BLAKE2b-256 ea00e7a5a7a2c518caf144ad73002f1958f8f201a8ec0cbc1c06dcdfd43f7667

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aae03d8e640e2cd58471add3759f2002c1d726548f53a70840a7b6f330210bc2
MD5 dae87b3fb73844bace8cc200292835c1
BLAKE2b-256 169f052d64ea5765c2dc1cc0f387e5cde1454534ab365700a48b09cd08f9612b

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e045a5445e772cafe4fee5b3954947af7984a3057dcac0407ec55e8bab91bbee
MD5 bbfd685362768c8538296c8abb157b75
BLAKE2b-256 85aa32a8ef5b95a867a0a8718d2fec9fb1ea0adadb8b1eba93f6c2a5481ea8b9

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5d801633c69e67f215c1b796a7040ba33e2c6b3bab3d335c2caeca8a24679081
MD5 2616a060d1f18665c2af674b2f735887
BLAKE2b-256 f5ba55f649fbc3dbe95b7d4e34cbcab3fe700916c32dbc926186b417e52e0aef

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp34-cp34m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp34-cp34m-win_amd64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.4m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 8d15d61d2b6324d99f135cb8ef95d1475367a4ebb3b9a1fc0f5b53a16c21974a
MD5 05132d37ae7f5903f28fbef0fd832953
BLAKE2b-256 b5254de92cc73d3c5b97f9fbb21d401475214ea69fe28a185d895c43de890f67

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp34-cp34m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp34-cp34m-win32.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.4m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 9ebea27859a26c97ef33b6d07dc36190890a1ca4988eac317544a61001b90e92
MD5 d2cb4259be3db36b5fe65e623f5c00b2
BLAKE2b-256 59e6dee9653693480f56a26618fa372461a9898cb24b78f3e94ec908de47e358

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e45a49f3bd713540b5607b77e8fc7057a289a795c5fe182333b286a4d3e0338b
MD5 8dc1af41bad8ea7e54ecb8470ba41ecf
BLAKE2b-256 45ced4ea171b7200f08b68b22c722e223d4914de4a808b6bf0c22cd843ca01e6

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c1fd93ba6b684c3624a7f9b8e5afc6c78bc381fd2607504860c0367a7055994d
MD5 f19e77118f305a91d29219b7adb49ac5
BLAKE2b-256 f9c5539afc5af0ee77a68c8a2c22be882c7b999aba59a31965e22c3f1ed77715

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b8891cd8489aa622f2789a4a48b8e99e068bfef00653ae907a8fc89ee6c54682
MD5 1401bdd20d940c2490ffd33bc2a9479c
BLAKE2b-256 71b8fdf0f7a18c814fa51b51882ef80f699e1ae19f335a4e58e1f8ff52b776fb

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e8010c4fe8f1d3625c27a89625b35906869651094b5ef5a0b22cd8514501d7d8
MD5 d021f8be8a580738d77cff93654c65da
BLAKE2b-256 935fa7b89db4915ad20f25dde7c36e9cbc8fc6adb4a1ef65a999ef1ffc379316

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 40c8f8f2e72dabb183820c7d77caa7b826d87d919056a02507c941f0e583c83e
MD5 3b489bb0ee6baab16420f0e6001223d5
BLAKE2b-256 0d8832185647de7363d075aa43aaf3f7bd2afe8e1b14fa6dcf2753a60d363c48

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 cb439dc1d8ee60f441594db1a12543c4e91260cd548b7ad9bc58bff3916f8dde
MD5 8a4a68e52464b1b25d8bedeab6f23325
BLAKE2b-256 09fd074c20ce7b17631988e5175b843b90443fb58f395fe8bd064495e47dbae1

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 68df1b389647f300f6f93535b0eb94efacbf5e670982c1936885e7981409dd3f
MD5 0ea4752e1eea7005cce69ed490444b00
BLAKE2b-256 f051554b7213725fffbf5eae823c92e9ab388674a896fa1d4ced5a73e9e49231

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 82743bf812380ed767a9c3c263a8f0d76e7af93abd2404ee199bf46e57e56f4f
MD5 72afb5b6d90095cec885840aa2d1a4d2
BLAKE2b-256 c3238998fab022eba618732438ff25b8da506a75758ccc27a570cf8016434a14

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.20.1-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for scikit_learn-0.20.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9ee7e147fcb7355ea646916f13eacb71f89c90ccbf9b067078f14c4675cc0003
MD5 73dec1652fe5087265e53e2bb9c31417
BLAKE2b-256 cdd50408976ac00293455e5eb0e3d29e91faa5ee65dfc0f63b35a0d3f4f8b4f7

See more details on using hashes here.

File details

Details for the file scikit_learn-0.20.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.20.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1ccbc5d9bdd933f3f75a3e8f0a60eac764388be84cee9e66bfd51d16992996f0
MD5 3886de8040614fce57c46676d3ccd49d
BLAKE2b-256 17932bd28a74b12dab479d79cab5485e265dc9d2d26b781a04ef2d5aa9f4a5bc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page