Skip to main content

A set of python modules for machine learning and data mining

Project description

.. -*- mode: rst -*-
|Travis|_ |AppVeyor|_ |Coveralls|_ |CircleCI|_ |Python27|_ |Python35|_ |PyPi|_ |DOI|_

.. |Travis| image:: https://api.travis-ci.org/scikit-learn/scikit-learn.svg?branch=master
.. _Travis: https://travis-ci.org/scikit-learn/scikit-learn

.. |AppVeyor| image:: https://ci.appveyor.com/api/projects/status/github/scikit-learn/scikit-learn?branch=master&svg=true
.. _AppVeyor: https://ci.appveyor.com/project/sklearn-ci/scikit-learn/history

.. |Coveralls| image:: https://coveralls.io/repos/scikit-learn/scikit-learn/badge.svg?branch=master&service=github
.. _Coveralls: https://coveralls.io/r/scikit-learn/scikit-learn

.. |CircleCI| image:: https://circleci.com/gh/scikit-learn/scikit-learn/tree/master.svg?style=shield&circle-token=:circle-token
.. _CircleCI: https://circleci.com/gh/scikit-learn/scikit-learn

.. |Python27| image:: https://img.shields.io/badge/python-2.7-blue.svg
.. _Python27: https://badge.fury.io/py/scikit-learn

.. |Python35| image:: https://img.shields.io/badge/python-3.5-blue.svg
.. _Python35: https://badge.fury.io/py/scikit-learn

.. |PyPi| image:: https://badge.fury.io/py/scikit-learn.svg
.. _PyPi: https://badge.fury.io/py/scikit-learn

.. |DOI| image:: https://zenodo.org/badge/21369/scikit-learn/scikit-learn.svg
.. _DOI: https://zenodo.org/badge/latestdoi/21369/scikit-learn/scikit-learn

scikit-learn
============

scikit-learn is a Python module for machine learning built on top of
SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the `AUTHORS.rst <AUTHORS.rst>`_ file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation
------------

Dependencies
~~~~~~~~~~~~

Scikit-learn requires::

- Python (>= 2.6 or >= 3.3),
- NumPy (>= 1.6.1),
- SciPy (>= 0.9).

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra
Subprograms library. scikit-learn comes with a reference implementation, but
the system CBLAS will be detected by the build system and used if present.
CBLAS exists in many implementations; see `Linear algebra libraries
<http://scikit-learn.org/stable/modules/computational_performance.html#linear-algebra-libraries>`_
for known issues.

User installation
~~~~~~~~~~~~~~~~~

If you already have a working installation of numpy and scipy,
the easiest way to install scikit-learn is using ``pip`` ::

pip install -U scikit-learn

or ``conda``::

conda install scikit-learn

The documentation includes more detailed `installation instructions <http://scikit-learn.org/stable/install.html>`_.


Development
-----------

We welcome new contributors of all experience levels. The scikit-learn
community goals are to be helpful, welcoming, and effective. The
`Contributor's Guide <http://scikit-learn.org/stable/developers/index.html>`_
has detailed information about contributing code, documentation, tests, and
more. We've included some basic information in this README.

Important links
~~~~~~~~~~~~~~~

- Official source code repo: https://github.com/scikit-learn/scikit-learn
- Download releases: http://sourceforge.net/projects/scikit-learn/files/
- Issue tracker: https://github.com/scikit-learn/scikit-learn/issues

Source code
~~~~~~~~~~~

You can check the latest sources with the command::

git clone https://github.com/scikit-learn/scikit-learn.git

Setting up a development environment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Quick tutorial on how to go about setting up your environment to
contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Testing
~~~~~~~

After installation, you can launch the test suite from outside the
source directory (you will need to have the ``nose`` package installed)::

$ nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path
to the ``python.exe`` program) as using the ``nosetests.exe`` program can badly
interact with tests that use ``multiprocessing``::

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/install.html#testing
for more information.

Random number generation can be controlled during testing by setting
the ``SKLEARN_SEED`` environment variable.

Submitting a Pull Request
~~~~~~~~~~~~~~~~~~~~~~~~~

Before opening a Pull Request, have a look at the
full Contributing page to make sure your code complies
with our guidelines: http://scikit-learn.org/stable/developers/index.html


Project history
---------------

The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the AUTHORS.rst file for a complete list of contributors.

The project is currently maintained by a team of volunteers.

**Note** `scikit-learn` was previously referred to as `scikits.learn`.


Help and Support
----------------

Documentation
~~~~~~~~~~~~~

- HTML documentation (stable release): http://scikit-learn.org
- HTML documentation (development version): http://scikit-learn.org/dev/
- FAQ: http://scikit-learn.org/stable/faq.html

Communication
~~~~~~~~~~~~~

- Mailing list: https://mail.python.org/mailman/listinfo/scikit-learn
- IRC channel: ``#scikit-learn`` at ``irc.freenode.net``
- Stack Overflow: http://stackoverflow.com/questions/tagged/scikit-learn
- Website: http://scikit-learn.org

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.18.tar.gz (8.9 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.18-cp35-cp35m-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

scikit_learn-0.18-cp35-cp35m-win32.whl (3.7 MB view details)

Uploaded CPython 3.5m Windows x86

scikit_learn-0.18-cp35-cp35m-manylinux1_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.18-cp35-cp35m-manylinux1_i686.whl (10.6 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.18-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.18-cp34-cp34m-manylinux1_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.18-cp34-cp34m-manylinux1_i686.whl (10.7 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.18-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.18-cp27-cp27mu-manylinux1_x86_64.whl (11.4 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.18-cp27-cp27mu-manylinux1_i686.whl (10.6 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.18-cp27-cp27m-win_amd64.whl (4.2 MB view details)

Uploaded CPython 2.7m Windows x86-64

scikit_learn-0.18-cp27-cp27m-win32.whl (3.8 MB view details)

Uploaded CPython 2.7m Windows x86

scikit_learn-0.18-cp27-cp27m-manylinux1_x86_64.whl (11.4 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.18-cp27-cp27m-manylinux1_i686.whl (10.6 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.18-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.1 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit-learn-0.18.win-amd64-py3.5.exe (4.7 MB view details)

Uploaded Source

scikit-learn-0.18.win-amd64-py2.7.exe (4.4 MB view details)

Uploaded Source

scikit-learn-0.18.win32-py3.5.exe (4.2 MB view details)

Uploaded Source

scikit-learn-0.18.win32-py2.7.exe (4.1 MB view details)

Uploaded Source

File details

Details for the file scikit-learn-0.18.tar.gz.

File metadata

  • Download URL: scikit-learn-0.18.tar.gz
  • Upload date:
  • Size: 8.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scikit-learn-0.18.tar.gz
Algorithm Hash digest
SHA256 240009789d6495240b332e059cbd2499f4d2981c93873983c9e1d5189f90315f
MD5 cda5d2f87baae33294b8e9294df95013
BLAKE2b-256 91cf9a1fe9d70e8fefe4f325a439a6380cd7059d1af8baa646519f4b0473b879

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 f0aab3187e1ee54bf77adaa122fe352a580eb74be808e0509f0d73dc5b3b37be
MD5 b738c4a83e138166b6c6f2b9a50e998c
BLAKE2b-256 cca29ebf58b854d20cf13d5dceae83230c4f3827ca828553bf0c63d042c165e6

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 63c876068ad150a9b8645d735daadcda3c51174ad11a47f6736abd114030a622
MD5 72f283ca899db3461ab47e5d5d2cdb39
BLAKE2b-256 0354bd7052d45931bd79a0133721385e3969aa93d8f1da4254c10dbc9d152a81

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 07f71e54b764d64ca420d9e11f9ee0c2f8cb6344c758ff8c80e292f82f779b56
MD5 657770de079bd5c73a47dc74e75ab434
BLAKE2b-256 e9fcd923732ac9ddee7eb883d94dd3d127425280c9986ef47bae8656db34fe9f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d9cf244831792163c9ce5e45e82af7aabd3f7f552b4808848053134f16c2338f
MD5 caaf246d7c154fb78197ea6c1412c712
BLAKE2b-256 a9e3fabd055b0411fb24b9fc3e7faa6cc1c8d5021ea5d5d90d3387a7b4300f81

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b28cd81afbf04601d62b02ad6b99a69ea1974f0bdf379a6fd3ee0f99e9e55db8
MD5 b78720623c33f57ba6ecccd96f7ab56a
BLAKE2b-256 ff230dd76ac9020d7d4edc3e2bac7dcef3d416e1c183e3cfac94515734ad2d2c

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a78b25b573153902a0f6e9a1aeac402a54510919e0a38d55251f6e391bc1fe48
MD5 1bfc1dc1b51c15183f6dfe7d2d37cf2a
BLAKE2b-256 34f8f51fc4253178b387599b36c875ce3ae8b4b4a5aea78833a826a269cbb53c

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ae0c7891dff7b554e739242a5f6d259161c10b64a1135621b54a0fb93bc9a600
MD5 340eb3552f4067020cba682916645e0d
BLAKE2b-256 b6ae436ba89538ba09143255bc3a53f274bef594c6d70aca6967970c94363e51

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ad1009d0361fc7c8349d430667f2e23c7bf93e4a880dee31637f2960536082dd
MD5 91e2482a261c9e4ae12b54a53b736494
BLAKE2b-256 b44b179e555edbf1171d4df62849cb70aeee2f8186120edcbb4899c73486af3d

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7ec046eef7f7c798048479e078591a4db99615d4fda35f9386728df27b5ac484
MD5 6695bb68ac1cd891c13ea540dd524b96
BLAKE2b-256 9a514b2c24523ca21e9f3efadff99096067f1fdb20dd0b2a4582d68e63612a59

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 85591d794097a699616da979738c5aa3ec57238440ce9a7768b20463390f1c78
MD5 5e16ca7ec52f0dfeb8141dafdeafe694
BLAKE2b-256 a4bc0794c70b1191a9aff147016d6b2ba44c9b56ec01f5ccbfd51e993988f622

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 fcdbe815665e404e63ab3add06174203d4f4b4d5f83f32d9504a462607de04c2
MD5 f8fe5caeaa1a256fbc122caa069382b2
BLAKE2b-256 9aa62cb7f5802700f39908b7ad77e05678fcdf1846835e740a536b0007bdd348

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 dc972d89aa022de88bdfb6a2e834007146079035867eec17a7b2ba9678380242
MD5 a6cc84eb288660a360cbec881b281311
BLAKE2b-256 9daff813e5b4092f2e8079b96bc140d5127c804357f6dcf0053f3938f6d22b10

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a68fefbf9aaa33b2e4de243bff7ac3a3898399210e1d058d50ea641401c451e6
MD5 1f8a9f1e237c01ae9d0c77ccfeb8b524
BLAKE2b-256 ecf885c84eda45c1c63b246cbdf2e0272ec2711cf748b22e3e0d9e29abb72bb9

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1c4e0308fc46a63b4cffab59f90a6c6fad7abb79254f8d1b4c5d0fa431292fe6
MD5 cadee8f0b7fa158615373e31f6711335
BLAKE2b-256 20381824b9ff5b3c8fc36d32d23f79d4b6e21cc02f45336cbe70909fe8e9f628

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c16ec58f3d66a8a665a3921b311270db498f3594a2ec1307eb0c1b367f58826a
MD5 3fb069c954d6e8507f40e8d4aa76b4bd
BLAKE2b-256 36003d60d8f99ea682c4a2565c2a89d295ef9fdd31e1cf0a727d6dae862b4391

See more details on using hashes here.

File details

Details for the file scikit-learn-0.18.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for scikit-learn-0.18.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 ec7c0025bc600e8cfc7e75279cebd651d8c86787f42057308cbce04eac001bf7
MD5 2b41ddc1ac1f0e911d2ed47f2859ca6c
BLAKE2b-256 c7871698e1037ee017365169f10a728e51affae568770e8d36e105a6249ad5c9

See more details on using hashes here.

File details

Details for the file scikit-learn-0.18.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.18.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 417f04786284283caaf676927d610a13b9f68791d33ec262ee2563f89229c7b9
MD5 87a42c0329b227db1f3a71fe57ceb26a
BLAKE2b-256 d172aa9fceabd0b1514d93f6e051924ade0afbf3704b9352823aedda7ec77db9

See more details on using hashes here.

File details

Details for the file scikit-learn-0.18.win32-py3.5.exe.

File metadata

File hashes

Hashes for scikit-learn-0.18.win32-py3.5.exe
Algorithm Hash digest
SHA256 77c3bc2ac77632da0a92666ce36d93e67036ab5f783c483011960fd732d88b76
MD5 6699a41317154c096d8d4f17916acfe6
BLAKE2b-256 cdf7f6f9a61b3c29dfe98465eb28dd671eb3cf2913fba8044c6f6213fdf6c532

See more details on using hashes here.

File details

Details for the file scikit-learn-0.18.win32-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.18.win32-py2.7.exe
Algorithm Hash digest
SHA256 3c98eff81f4f2cdc996cba70d7870465ace61457574cff2a4289aa17128dfcf1
MD5 9b0fb433033dde64982c2f2279d52c76
BLAKE2b-256 b3e3b8bac533725396a0e4afa90361b37f6440b46bb6b4c824c7fbd1e0f23e01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page