Skip to main content

A set of python modules for machine learning and data mining

Project description

.. -*- mode: rst -*-
|Travis|_ |AppVeyor|_ |Coveralls|_ |CircleCI|_ |Python27|_ |Python35|_ |PyPi|_ |DOI|_

.. |Travis| image:: https://api.travis-ci.org/scikit-learn/scikit-learn.svg?branch=master
.. _Travis: https://travis-ci.org/scikit-learn/scikit-learn

.. |AppVeyor| image:: https://ci.appveyor.com/api/projects/status/github/scikit-learn/scikit-learn?branch=master&svg=true
.. _AppVeyor: https://ci.appveyor.com/project/sklearn-ci/scikit-learn/history

.. |Coveralls| image:: https://coveralls.io/repos/scikit-learn/scikit-learn/badge.svg?branch=master&service=github
.. _Coveralls: https://coveralls.io/r/scikit-learn/scikit-learn

.. |CircleCI| image:: https://circleci.com/gh/scikit-learn/scikit-learn/tree/master.svg?style=shield&circle-token=:circle-token
.. _CircleCI: https://circleci.com/gh/scikit-learn/scikit-learn

.. |Python27| image:: https://img.shields.io/badge/python-2.7-blue.svg
.. _Python27: https://badge.fury.io/py/scikit-learn

.. |Python35| image:: https://img.shields.io/badge/python-3.5-blue.svg
.. _Python35: https://badge.fury.io/py/scikit-learn

.. |PyPi| image:: https://badge.fury.io/py/scikit-learn.svg
.. _PyPi: https://badge.fury.io/py/scikit-learn

.. |DOI| image:: https://zenodo.org/badge/21369/scikit-learn/scikit-learn.svg
.. _DOI: https://zenodo.org/badge/latestdoi/21369/scikit-learn/scikit-learn

scikit-learn
============

scikit-learn is a Python module for machine learning built on top of
SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the `AUTHORS.rst <AUTHORS.rst>`_ file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation
------------

Dependencies
~~~~~~~~~~~~

Scikit-learn requires::

- Python (>= 2.6 or >= 3.3),
- NumPy (>= 1.6.1),
- SciPy (>= 0.9).

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra
Subprograms library. scikit-learn comes with a reference implementation, but
the system CBLAS will be detected by the build system and used if present.
CBLAS exists in many implementations; see `Linear algebra libraries
<http://scikit-learn.org/stable/modules/computational_performance.html#linear-algebra-libraries>`_
for known issues.

User installation
~~~~~~~~~~~~~~~~~

If you already have a working installation of numpy and scipy,
the easiest way to install scikit-learn is using ``pip`` ::

pip install -U scikit-learn

or ``conda``::

conda install scikit-learn

The documentation includes more detailed `installation instructions <http://scikit-learn.org/stable/install.html>`_.


Development
-----------

We welcome new contributors of all experience levels. The scikit-learn
community goals are to be helpful, welcoming, and effective. The
`Contributor's Guide <http://scikit-learn.org/stable/developers/index.html>`_
has detailed information about contributing code, documentation, tests, and
more. We've included some basic information in this README.

Important links
~~~~~~~~~~~~~~~

- Official source code repo: https://github.com/scikit-learn/scikit-learn
- Download releases: http://sourceforge.net/projects/scikit-learn/files/
- Issue tracker: https://github.com/scikit-learn/scikit-learn/issues

Source code
~~~~~~~~~~~

You can check the latest sources with the command::

git clone https://github.com/scikit-learn/scikit-learn.git

Setting up a development environment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Quick tutorial on how to go about setting up your environment to
contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Testing
~~~~~~~

After installation, you can launch the test suite from outside the
source directory (you will need to have the ``nose`` package installed)::

$ nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path
to the ``python.exe`` program) as using the ``nosetests.exe`` program can badly
interact with tests that use ``multiprocessing``::

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/install.html#testing
for more information.

Random number generation can be controlled during testing by setting
the ``SKLEARN_SEED`` environment variable.

Submitting a Pull Request
~~~~~~~~~~~~~~~~~~~~~~~~~

Before opening a Pull Request, have a look at the
full Contributing page to make sure your code complies
with our guidelines: http://scikit-learn.org/stable/developers/index.html


Project history
---------------

The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the AUTHORS.rst file for a complete list of contributors.

The project is currently maintained by a team of volunteers.

**Note** `scikit-learn` was previously referred to as `scikits.learn`.


Help and Support
----------------

Documentation
~~~~~~~~~~~~~

- HTML documentation (stable release): http://scikit-learn.org
- HTML documentation (development version): http://scikit-learn.org/dev/
- FAQ: http://scikit-learn.org/stable/faq.html

Communication
~~~~~~~~~~~~~

- Mailing list: https://mail.python.org/mailman/listinfo/scikit-learn
- IRC channel: ``#scikit-learn`` at ``irc.freenode.net``
- Stack Overflow: http://stackoverflow.com/questions/tagged/scikit-learn
- Website: http://scikit-learn.org

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
scikit_learn-0.18-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.1 MB) Copy SHA256 hash SHA256 Wheel 2.7
scikit_learn-0.18-cp27-cp27m-manylinux1_i686.whl (10.6 MB) Copy SHA256 hash SHA256 Wheel 2.7
scikit_learn-0.18-cp27-cp27m-manylinux1_x86_64.whl (11.4 MB) Copy SHA256 hash SHA256 Wheel 2.7
scikit_learn-0.18-cp27-cp27mu-manylinux1_i686.whl (10.6 MB) Copy SHA256 hash SHA256 Wheel 2.7
scikit_learn-0.18-cp27-cp27mu-manylinux1_x86_64.whl (11.4 MB) Copy SHA256 hash SHA256 Wheel 2.7
scikit_learn-0.18-cp27-cp27m-win32.whl (3.8 MB) Copy SHA256 hash SHA256 Wheel 2.7
scikit_learn-0.18-cp27-cp27m-win_amd64.whl (4.2 MB) Copy SHA256 hash SHA256 Wheel 2.7
scikit_learn-0.18-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (6.8 MB) Copy SHA256 hash SHA256 Wheel 3.4
scikit_learn-0.18-cp34-cp34m-manylinux1_i686.whl (10.7 MB) Copy SHA256 hash SHA256 Wheel 3.4
scikit_learn-0.18-cp34-cp34m-manylinux1_x86_64.whl (11.5 MB) Copy SHA256 hash SHA256 Wheel 3.4
scikit_learn-0.18-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (6.8 MB) Copy SHA256 hash SHA256 Wheel 3.5
scikit_learn-0.18-cp35-cp35m-manylinux1_i686.whl (10.6 MB) Copy SHA256 hash SHA256 Wheel 3.5
scikit_learn-0.18-cp35-cp35m-manylinux1_x86_64.whl (11.3 MB) Copy SHA256 hash SHA256 Wheel 3.5
scikit_learn-0.18-cp35-cp35m-win32.whl (3.7 MB) Copy SHA256 hash SHA256 Wheel 3.5
scikit_learn-0.18-cp35-cp35m-win_amd64.whl (4.0 MB) Copy SHA256 hash SHA256 Wheel 3.5
scikit-learn-0.18.tar.gz (8.9 MB) Copy SHA256 hash SHA256 Source None
scikit-learn-0.18.win32-py2.7.exe (4.1 MB) Copy SHA256 hash SHA256 Windows Installer 2.7
scikit-learn-0.18.win32-py3.5.exe (4.2 MB) Copy SHA256 hash SHA256 Windows Installer 3.5
scikit-learn-0.18.win-amd64-py2.7.exe (4.4 MB) Copy SHA256 hash SHA256 Windows Installer 2.7
scikit-learn-0.18.win-amd64-py3.5.exe (4.7 MB) Copy SHA256 hash SHA256 Windows Installer 3.5

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page