A set of python modules for machine learning and data mining
Project description
|Travis|_ |AppVeyor|_ |Coveralls|_ |CircleCI|_ |Python27|_ |Python35|_ |PyPi|_ |DOI|_
.. |Travis| image:: https://api.travis-ci.org/scikit-learn/scikit-learn.svg?branch=master
.. _Travis: https://travis-ci.org/scikit-learn/scikit-learn
.. |AppVeyor| image:: https://ci.appveyor.com/api/projects/status/github/scikit-learn/scikit-learn?branch=master&svg=true
.. _AppVeyor: https://ci.appveyor.com/project/sklearn-ci/scikit-learn/history
.. |Coveralls| image:: https://coveralls.io/repos/scikit-learn/scikit-learn/badge.svg?branch=master&service=github
.. _Coveralls: https://coveralls.io/r/scikit-learn/scikit-learn
.. |CircleCI| image:: https://circleci.com/gh/scikit-learn/scikit-learn/tree/master.svg?style=shield&circle-token=:circle-token
.. _CircleCI: https://circleci.com/gh/scikit-learn/scikit-learn
.. |Python27| image:: https://img.shields.io/badge/python-2.7-blue.svg
.. _Python27: https://badge.fury.io/py/scikit-learn
.. |Python35| image:: https://img.shields.io/badge/python-3.5-blue.svg
.. _Python35: https://badge.fury.io/py/scikit-learn
.. |PyPi| image:: https://badge.fury.io/py/scikit-learn.svg
.. _PyPi: https://badge.fury.io/py/scikit-learn
.. |DOI| image:: https://zenodo.org/badge/21369/scikit-learn/scikit-learn.svg
.. _DOI: https://zenodo.org/badge/latestdoi/21369/scikit-learn/scikit-learn
scikit-learn
============
scikit-learn is a Python module for machine learning built on top of
SciPy and distributed under the 3-Clause BSD license.
The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the `AUTHORS.rst <AUTHORS.rst>`_ file for a complete list of contributors.
It is currently maintained by a team of volunteers.
Website: http://scikit-learn.org
Installation
------------
Dependencies
~~~~~~~~~~~~
Scikit-learn requires::
- Python (>= 2.6 or >= 3.3),
- NumPy (>= 1.6.1),
- SciPy (>= 0.9).
scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra
Subprograms library. scikit-learn comes with a reference implementation, but
the system CBLAS will be detected by the build system and used if present.
CBLAS exists in many implementations; see `Linear algebra libraries
<http://scikit-learn.org/stable/modules/computational_performance.html#linear-algebra-libraries>`_
for known issues.
User installation
~~~~~~~~~~~~~~~~~
If you already have a working installation of numpy and scipy,
the easiest way to install scikit-learn is using ``pip`` ::
pip install -U scikit-learn
or ``conda``::
conda install scikit-learn
The documentation includes more detailed `installation instructions <http://scikit-learn.org/stable/install.html>`_.
Development
-----------
We welcome new contributors of all experience levels. The scikit-learn
community goals are to be helpful, welcoming, and effective. The
`Contributor's Guide <http://scikit-learn.org/stable/developers/index.html>`_
has detailed information about contributing code, documentation, tests, and
more. We've included some basic information in this README.
Important links
~~~~~~~~~~~~~~~
- Official source code repo: https://github.com/scikit-learn/scikit-learn
- Download releases: http://sourceforge.net/projects/scikit-learn/files/
- Issue tracker: https://github.com/scikit-learn/scikit-learn/issues
Source code
~~~~~~~~~~~
You can check the latest sources with the command::
git clone https://github.com/scikit-learn/scikit-learn.git
Setting up a development environment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Quick tutorial on how to go about setting up your environment to
contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md
Testing
~~~~~~~
After installation, you can launch the test suite from outside the
source directory (you will need to have the ``nose`` package installed)::
$ nosetests -v sklearn
Under Windows, it is recommended to use the following command (adjust the path
to the ``python.exe`` program) as using the ``nosetests.exe`` program can badly
interact with tests that use ``multiprocessing``::
C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn
See the web page http://scikit-learn.org/stable/install.html#testing
for more information.
Random number generation can be controlled during testing by setting
the ``SKLEARN_SEED`` environment variable.
Submitting a Pull Request
~~~~~~~~~~~~~~~~~~~~~~~~~
Before opening a Pull Request, have a look at the
full Contributing page to make sure your code complies
with our guidelines: http://scikit-learn.org/stable/developers/index.html
Project history
---------------
The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the AUTHORS.rst file for a complete list of contributors.
The project is currently maintained by a team of volunteers.
**Note** `scikit-learn` was previously referred to as `scikits.learn`.
Help and Support
----------------
Documentation
~~~~~~~~~~~~~
- HTML documentation (stable release): http://scikit-learn.org
- HTML documentation (development version): http://scikit-learn.org/dev/
- FAQ: http://scikit-learn.org/stable/faq.html
Communication
~~~~~~~~~~~~~
- Mailing list: https://mail.python.org/mailman/listinfo/scikit-learn
- IRC channel: ``#scikit-learn`` at ``irc.freenode.net``
- Stack Overflow: http://stackoverflow.com/questions/tagged/scikit-learn
- Website: http://scikit-learn.org
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file scikit-learn-0.18.tar.gz
.
File metadata
- Download URL: scikit-learn-0.18.tar.gz
- Upload date:
- Size: 8.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 240009789d6495240b332e059cbd2499f4d2981c93873983c9e1d5189f90315f |
|
MD5 | cda5d2f87baae33294b8e9294df95013 |
|
BLAKE2b-256 | 91cf9a1fe9d70e8fefe4f325a439a6380cd7059d1af8baa646519f4b0473b879 |
File details
Details for the file scikit_learn-0.18-cp35-cp35m-win_amd64.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp35-cp35m-win_amd64.whl
- Upload date:
- Size: 4.0 MB
- Tags: CPython 3.5m, Windows x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f0aab3187e1ee54bf77adaa122fe352a580eb74be808e0509f0d73dc5b3b37be |
|
MD5 | b738c4a83e138166b6c6f2b9a50e998c |
|
BLAKE2b-256 | cca29ebf58b854d20cf13d5dceae83230c4f3827ca828553bf0c63d042c165e6 |
File details
Details for the file scikit_learn-0.18-cp35-cp35m-win32.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp35-cp35m-win32.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.5m, Windows x86
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63c876068ad150a9b8645d735daadcda3c51174ad11a47f6736abd114030a622 |
|
MD5 | 72f283ca899db3461ab47e5d5d2cdb39 |
|
BLAKE2b-256 | 0354bd7052d45931bd79a0133721385e3969aa93d8f1da4254c10dbc9d152a81 |
File details
Details for the file scikit_learn-0.18-cp35-cp35m-manylinux1_x86_64.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp35-cp35m-manylinux1_x86_64.whl
- Upload date:
- Size: 11.3 MB
- Tags: CPython 3.5m
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 07f71e54b764d64ca420d9e11f9ee0c2f8cb6344c758ff8c80e292f82f779b56 |
|
MD5 | 657770de079bd5c73a47dc74e75ab434 |
|
BLAKE2b-256 | e9fcd923732ac9ddee7eb883d94dd3d127425280c9986ef47bae8656db34fe9f |
File details
Details for the file scikit_learn-0.18-cp35-cp35m-manylinux1_i686.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp35-cp35m-manylinux1_i686.whl
- Upload date:
- Size: 10.6 MB
- Tags: CPython 3.5m
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d9cf244831792163c9ce5e45e82af7aabd3f7f552b4808848053134f16c2338f |
|
MD5 | caaf246d7c154fb78197ea6c1412c712 |
|
BLAKE2b-256 | a9e3fabd055b0411fb24b9fc3e7faa6cc1c8d5021ea5d5d90d3387a7b4300f81 |
File details
Details for the file scikit_learn-0.18-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 6.8 MB
- Tags: CPython 3.5m, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b28cd81afbf04601d62b02ad6b99a69ea1974f0bdf379a6fd3ee0f99e9e55db8 |
|
MD5 | b78720623c33f57ba6ecccd96f7ab56a |
|
BLAKE2b-256 | ff230dd76ac9020d7d4edc3e2bac7dcef3d416e1c183e3cfac94515734ad2d2c |
File details
Details for the file scikit_learn-0.18-cp34-cp34m-manylinux1_x86_64.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp34-cp34m-manylinux1_x86_64.whl
- Upload date:
- Size: 11.5 MB
- Tags: CPython 3.4m
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a78b25b573153902a0f6e9a1aeac402a54510919e0a38d55251f6e391bc1fe48 |
|
MD5 | 1bfc1dc1b51c15183f6dfe7d2d37cf2a |
|
BLAKE2b-256 | 34f8f51fc4253178b387599b36c875ce3ae8b4b4a5aea78833a826a269cbb53c |
File details
Details for the file scikit_learn-0.18-cp34-cp34m-manylinux1_i686.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp34-cp34m-manylinux1_i686.whl
- Upload date:
- Size: 10.7 MB
- Tags: CPython 3.4m
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ae0c7891dff7b554e739242a5f6d259161c10b64a1135621b54a0fb93bc9a600 |
|
MD5 | 340eb3552f4067020cba682916645e0d |
|
BLAKE2b-256 | b6ae436ba89538ba09143255bc3a53f274bef594c6d70aca6967970c94363e51 |
File details
Details for the file scikit_learn-0.18-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 6.8 MB
- Tags: CPython 3.4m, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ad1009d0361fc7c8349d430667f2e23c7bf93e4a880dee31637f2960536082dd |
|
MD5 | 91e2482a261c9e4ae12b54a53b736494 |
|
BLAKE2b-256 | b44b179e555edbf1171d4df62849cb70aeee2f8186120edcbb4899c73486af3d |
File details
Details for the file scikit_learn-0.18-cp27-cp27mu-manylinux1_x86_64.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp27-cp27mu-manylinux1_x86_64.whl
- Upload date:
- Size: 11.4 MB
- Tags: CPython 2.7mu
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ec046eef7f7c798048479e078591a4db99615d4fda35f9386728df27b5ac484 |
|
MD5 | 6695bb68ac1cd891c13ea540dd524b96 |
|
BLAKE2b-256 | 9a514b2c24523ca21e9f3efadff99096067f1fdb20dd0b2a4582d68e63612a59 |
File details
Details for the file scikit_learn-0.18-cp27-cp27mu-manylinux1_i686.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp27-cp27mu-manylinux1_i686.whl
- Upload date:
- Size: 10.6 MB
- Tags: CPython 2.7mu
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 85591d794097a699616da979738c5aa3ec57238440ce9a7768b20463390f1c78 |
|
MD5 | 5e16ca7ec52f0dfeb8141dafdeafe694 |
|
BLAKE2b-256 | a4bc0794c70b1191a9aff147016d6b2ba44c9b56ec01f5ccbfd51e993988f622 |
File details
Details for the file scikit_learn-0.18-cp27-cp27m-win_amd64.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp27-cp27m-win_amd64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 2.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fcdbe815665e404e63ab3add06174203d4f4b4d5f83f32d9504a462607de04c2 |
|
MD5 | f8fe5caeaa1a256fbc122caa069382b2 |
|
BLAKE2b-256 | 9aa62cb7f5802700f39908b7ad77e05678fcdf1846835e740a536b0007bdd348 |
File details
Details for the file scikit_learn-0.18-cp27-cp27m-win32.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp27-cp27m-win32.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 2.7m, Windows x86
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc972d89aa022de88bdfb6a2e834007146079035867eec17a7b2ba9678380242 |
|
MD5 | a6cc84eb288660a360cbec881b281311 |
|
BLAKE2b-256 | 9daff813e5b4092f2e8079b96bc140d5127c804357f6dcf0053f3938f6d22b10 |
File details
Details for the file scikit_learn-0.18-cp27-cp27m-manylinux1_x86_64.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp27-cp27m-manylinux1_x86_64.whl
- Upload date:
- Size: 11.4 MB
- Tags: CPython 2.7m
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a68fefbf9aaa33b2e4de243bff7ac3a3898399210e1d058d50ea641401c451e6 |
|
MD5 | 1f8a9f1e237c01ae9d0c77ccfeb8b524 |
|
BLAKE2b-256 | ecf885c84eda45c1c63b246cbdf2e0272ec2711cf748b22e3e0d9e29abb72bb9 |
File details
Details for the file scikit_learn-0.18-cp27-cp27m-manylinux1_i686.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp27-cp27m-manylinux1_i686.whl
- Upload date:
- Size: 10.6 MB
- Tags: CPython 2.7m
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1c4e0308fc46a63b4cffab59f90a6c6fad7abb79254f8d1b4c5d0fa431292fe6 |
|
MD5 | cadee8f0b7fa158615373e31f6711335 |
|
BLAKE2b-256 | 20381824b9ff5b3c8fc36d32d23f79d4b6e21cc02f45336cbe70909fe8e9f628 |
File details
Details for the file scikit_learn-0.18-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
.
File metadata
- Download URL: scikit_learn-0.18-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 7.1 MB
- Tags: CPython 2.7m, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c16ec58f3d66a8a665a3921b311270db498f3594a2ec1307eb0c1b367f58826a |
|
MD5 | 3fb069c954d6e8507f40e8d4aa76b4bd |
|
BLAKE2b-256 | 36003d60d8f99ea682c4a2565c2a89d295ef9fdd31e1cf0a727d6dae862b4391 |
File details
Details for the file scikit-learn-0.18.win-amd64-py3.5.exe
.
File metadata
- Download URL: scikit-learn-0.18.win-amd64-py3.5.exe
- Upload date:
- Size: 4.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec7c0025bc600e8cfc7e75279cebd651d8c86787f42057308cbce04eac001bf7 |
|
MD5 | 2b41ddc1ac1f0e911d2ed47f2859ca6c |
|
BLAKE2b-256 | c7871698e1037ee017365169f10a728e51affae568770e8d36e105a6249ad5c9 |
File details
Details for the file scikit-learn-0.18.win-amd64-py2.7.exe
.
File metadata
- Download URL: scikit-learn-0.18.win-amd64-py2.7.exe
- Upload date:
- Size: 4.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 417f04786284283caaf676927d610a13b9f68791d33ec262ee2563f89229c7b9 |
|
MD5 | 87a42c0329b227db1f3a71fe57ceb26a |
|
BLAKE2b-256 | d172aa9fceabd0b1514d93f6e051924ade0afbf3704b9352823aedda7ec77db9 |
File details
Details for the file scikit-learn-0.18.win32-py3.5.exe
.
File metadata
- Download URL: scikit-learn-0.18.win32-py3.5.exe
- Upload date:
- Size: 4.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 77c3bc2ac77632da0a92666ce36d93e67036ab5f783c483011960fd732d88b76 |
|
MD5 | 6699a41317154c096d8d4f17916acfe6 |
|
BLAKE2b-256 | cdf7f6f9a61b3c29dfe98465eb28dd671eb3cf2913fba8044c6f6213fdf6c532 |
File details
Details for the file scikit-learn-0.18.win32-py2.7.exe
.
File metadata
- Download URL: scikit-learn-0.18.win32-py2.7.exe
- Upload date:
- Size: 4.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c98eff81f4f2cdc996cba70d7870465ace61457574cff2a4289aa17128dfcf1 |
|
MD5 | 9b0fb433033dde64982c2f2279d52c76 |
|
BLAKE2b-256 | b3e3b8bac533725396a0e4afa90361b37f6440b46bb6b4c824c7fbd1e0f23e01 |