Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis AppVeyor Coveralls

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Note scikit-learn was previously referred to as scikits.learn.

Dependencies

scikit-learn is tested to work under Python 2.6, Python 2.7, and Python 3.4. (using the same codebase thanks to an embedded copy of six). It should also work with Python 3.3.

The required dependencies to build the software are NumPy >= 1.6.1, SciPy >= 0.9 and a working C/C++ compiler.

For running the examples Matplotlib >= 1.1.1 is required and for running the tests you need nose >= 1.1.2.

This configuration matches the Ubuntu Precise 12.04 LTS release from April 2012.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

Install

This package uses distutils, which is the default way of installing python modules. To install in your home directory, use:

python setup.py install --user

To install for all users on Unix/Linux:

python setup.py build
sudo python setup.py install

For more detailed installation instructions, see the web page http://scikit-learn.org/stable/install.html

Development

Code

GIT

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

or if you have write privileges:

git clone git@github.com:scikit-learn/scikit-learn.git

Contributing

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

$ nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/install.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.17.1.tar.gz (7.9 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.17.1-cp35-cp35m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.5mWindows x86-64

scikit_learn-0.17.1-cp35-cp35m-win32.whl (3.0 MB view details)

Uploaded CPython 3.5mWindows x86

scikit_learn-0.17.1-cp35-cp35m-manylinux1_x86_64.whl (17.5 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.17.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.17.1-cp34-cp34m-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.4mWindows x86-64

scikit_learn-0.17.1-cp34-cp34m-win32.whl (3.0 MB view details)

Uploaded CPython 3.4mWindows x86

scikit_learn-0.17.1-cp34-cp34m-manylinux1_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.17.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.17.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.3mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.17.1-cp27-cp27mu-manylinux1_x86_64.whl (17.6 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.17.1-cp27-cp27m-win_amd64.whl (3.4 MB view details)

Uploaded CPython 2.7mWindows x86-64

scikit_learn-0.17.1-cp27-cp27m-win32.whl (3.1 MB view details)

Uploaded CPython 2.7mWindows x86

scikit_learn-0.17.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.9 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit-learn-0.17.1.win-amd64-py3.5.exe (3.4 MB view details)

Uploaded Source

scikit-learn-0.17.1.win-amd64-py3.4.exe (3.5 MB view details)

Uploaded Source

scikit-learn-0.17.1.win-amd64-py2.7.exe (3.6 MB view details)

Uploaded Source

scikit-learn-0.17.1.win32-py3.5.exe (3.2 MB view details)

Uploaded Source

scikit-learn-0.17.1.win32-py3.4.exe (3.3 MB view details)

Uploaded Source

scikit-learn-0.17.1.win32-py2.7.exe (3.4 MB view details)

Uploaded Source

File details

Details for the file scikit-learn-0.17.1.tar.gz.

File metadata

  • Download URL: scikit-learn-0.17.1.tar.gz
  • Upload date:
  • Size: 7.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scikit-learn-0.17.1.tar.gz
Algorithm Hash digest
SHA256 9f4cf58e57d81783289fc503caaed1f210bab49b7a6f680bf3c04b1e0a96e5f0
MD5 a2f8b877e6d99b1ed737144f5a478dfc
BLAKE2b-256 0d1d9c775f9403565f68aa23f9cef76c817a7115abd7ca1e1c5958a68c49fb6f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 6eb92d73f218b339dfdda2151f65d5c4e22e204e5ddd1c5c408a7afe896e8eec
MD5 a57862a5a2aadc3e6a002d1c112e3592
BLAKE2b-256 c7f2a6fa6ca145695971b3d1721003f065086aa0eceb91a2660c715e0776b86d

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 83233709b358bac8ebfeccbd9a8329ef5f7b2e9f4624d7dfa43634910a5de81d
MD5 c20c9efc75fbd6002e3c28f36f27f424
BLAKE2b-256 6e5ad3ff0fd5a774248455d2154e10b04e1010699a3285eb3ac6ceb304f68c00

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dd6136243e14b6138e32d07404059ee746fd52e8d6fd2b8bc1be133cfad843cb
MD5 3a76514dbe5ce67eef3625c658cea5d0
BLAKE2b-256 60edd6523ed3c7bb1702cd20e106790735087a1c7fae6d22b855165b9c282404

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 384613c0dd82e6ede71d870f4ceb696b8f17312c71a8c5343dcb3aa4a79fca6f
MD5 04ebb89851f6f6c323f91aba4673ec6e
BLAKE2b-256 0e6741af20e07bb80feea34d399a729c383c036269ca9a94ee2f3e09107c86ab

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 c0431cda2d45a0202a4be65924cd6377d67e10924910293196cb40c3d39badbc
MD5 91175585ecb6dc42b7db03191d9dfa20
BLAKE2b-256 dfe89e71a78e6b48df110034eb898003dca1c2f5431ef53f8fc7677d40063b32

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 44eccbeae4152c5dd88bf761132ab0661977cf4a5fb0eb3b8e5bddf6c6bc4514
MD5 ab00daed7cdac4cb16ad0613b91be07e
BLAKE2b-256 b89a02d5d76be66c57aaa9f917c87007b9b0bf486992cc7701512464d1ce11e9

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5c08809cdccb29ca7d5dcd5937bb9afa945750d3e136afdd73851f6e33f4e786
MD5 a722a7372b64ec9f7b49a2532d21372b
BLAKE2b-256 7ef11cc8a1ae2b4de89bff0981aee904ff05779c49a4c660fa38178f9772d3a7

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c11bdbe8d8c61017fe7f458564dcaa770a0731b9ada080366195eeb80dbb0d30
MD5 415ba274c5ae5e411b68a7498239ec1a
BLAKE2b-256 d3cb686d289eaf58e81c40673f93ee9dbcc46053c6768b89a7ede14b7e433a08

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9ccf1500dce3924e749cbf7ea1fd827dc5849280b45ecaf6054e2dd7f291ba67
MD5 05db336cad44f5e8603122a4a007f500
BLAKE2b-256 a96ac82c30c182f7aaa04d5d161ecdbc719a1f62efddcd407588c91695b01fec

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 83d3ebdc02b49bf816fcf03f7b1066830a993122e3db19141ed872536c006beb
MD5 337b91f502138ba7fd722803138f6dfd
BLAKE2b-256 bf8006e77e5a682c46a3880ec487a5f9d910f5c8d919df9aca58052089687c7e

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 8b41670fad4741476a7b257899940bb2fbb0134cfcec132a4a273423a7eb06ec
MD5 df8a1be2d8c412f6b814c2e7ffaa37f6
BLAKE2b-256 0705375ff2fc53668a48509887ed06f603073e5946de188ea4866bea5b00e6f5

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 5618b5cd653c6fdf470ef9b8c3d85d290f0cd5d03290bdb8f01c89042bcdb968
MD5 45304b718131055f3a52fa63bd11bac8
BLAKE2b-256 5c4e83e5dc768b945a7fa32cf2287ffa50d55c15d9bdb782f56f3edec592eb8b

See more details on using hashes here.

File details

Details for the file scikit_learn-0.17.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.17.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 794951b88178975e6c28d0c48e10cbebce26a0c967d5243ae5a0ca77b14e3df1
MD5 1f17339a1a304a4def12496d2e0f48dd
BLAKE2b-256 ae0942938d17f29f678101fca8764dc367fbbbfbf58d109686f9e6bd4a977055

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.1.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.1.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 b92682c0b2e4bda9145a154c4261dd88037230c7b9976c4fdcfd3f4b6b819680
MD5 66fd0bbaf374ff3b9b6941863dad892b
BLAKE2b-256 4e1d2a181ef517cf34d4741dfba24c0be0f956c5a292f8af5cdbb784561c8753

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.1.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.1.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 79ebec97707e0c25792badf3e5ccc932126170fff5404635c2eed6a06e39ef8b
MD5 952d2dd14385dcfd835f97eea0b6f60e
BLAKE2b-256 3bf4f4cb8a7c8a590dc9e71459b67dc3f5fd43599d7d294dd66676339d8dd2d4

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.1.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.1.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 57208291ebeb0b5659b96870b6bffc818d9edb36738b178fce7cdd6e00e6e41b
MD5 d32672b7e826068d899c0815f5ffa2d3
BLAKE2b-256 5f778cf98a2361ec516a3292a218e513ca5ab001b7b5ed5ca0ecc48257281521

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.1.win32-py3.5.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.1.win32-py3.5.exe
Algorithm Hash digest
SHA256 2249a1818924e88c05d84746230264e59854ae57a1fd6c11dd02f117417e5d62
MD5 2e19db956536dafa20dfb96f0712ba3a
BLAKE2b-256 d02ff7d27d17afac945df99caa4e9bb0bef1bc4f9901969261387f26ba5ec059

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.1.win32-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.1.win32-py3.4.exe
Algorithm Hash digest
SHA256 4789bbe14a6a4742ee511a2b24b5d208ddc8c156c011581caa789aa4eef6bc40
MD5 48d392a41d328f19b138e5f019bddf11
BLAKE2b-256 35ca2016bdd57aff0ef8c027a27c2ea82cee38bb183a0ccd7ef9eb553458441e

See more details on using hashes here.

File details

Details for the file scikit-learn-0.17.1.win32-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.17.1.win32-py2.7.exe
Algorithm Hash digest
SHA256 27fc39b271149db838422d2de7ddbb3223bc64b385bdc2d2703a356bfeabc0ee
MD5 4e999bbc9b21d78b8d371f0aaf9d66aa
BLAKE2b-256 c28b8e5d3b8c50d79a4f95206c7b0a34f8aba18645d35c28c12eb5649e5107ec

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page