Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis AppVeyor Codecov CircleCI Python27 Python35 PyPi DOI

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 2.7 or >= 3.3)

  • NumPy (>= 1.8.2)

  • SciPy (>= 0.13.3)

For running the examples Matplotlib >= 1.1.1 is required.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

The documentation includes more detailed installation instructions.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Setting up a development environment

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: http://scikit-learn.org/stable/about.html#citing-scikit-learn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.19.2.tar.gz (9.7 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.19.2-cp37-cp37m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

scikit_learn-0.19.2-cp37-cp37m-win32.whl (3.9 MB view details)

Uploaded CPython 3.7m Windows x86

scikit_learn-0.19.2-cp37-cp37m-manylinux1_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.19.2-cp37-cp37m-manylinux1_i686.whl (4.4 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.19.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.19.2-cp36-cp36m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

scikit_learn-0.19.2-cp36-cp36m-win32.whl (3.9 MB view details)

Uploaded CPython 3.6m Windows x86

scikit_learn-0.19.2-cp36-cp36m-manylinux1_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.19.2-cp36-cp36m-manylinux1_i686.whl (4.5 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.19.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.6m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.19.2-cp35-cp35m-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.5m Windows x86-64

scikit_learn-0.19.2-cp35-cp35m-win32.whl (3.9 MB view details)

Uploaded CPython 3.5m Windows x86

scikit_learn-0.19.2-cp35-cp35m-manylinux1_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.19.2-cp35-cp35m-manylinux1_i686.whl (4.4 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.19.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.19.2-cp34-cp34m-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.4m Windows x86-64

scikit_learn-0.19.2-cp34-cp34m-win32.whl (4.0 MB view details)

Uploaded CPython 3.4m Windows x86

scikit_learn-0.19.2-cp34-cp34m-manylinux1_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.19.2-cp34-cp34m-manylinux1_i686.whl (4.4 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.19.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.19.2-cp27-cp27mu-manylinux1_x86_64.whl (5.0 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.19.2-cp27-cp27mu-manylinux1_i686.whl (4.6 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.19.2-cp27-cp27m-win_amd64.whl (4.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

scikit_learn-0.19.2-cp27-cp27m-win32.whl (4.1 MB view details)

Uploaded CPython 2.7m Windows x86

scikit_learn-0.19.2-cp27-cp27m-manylinux1_x86_64.whl (5.0 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.19.2-cp27-cp27m-manylinux1_i686.whl (4.6 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.19.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file scikit-learn-0.19.2.tar.gz.

File metadata

File hashes

Hashes for scikit-learn-0.19.2.tar.gz
Algorithm Hash digest
SHA256 b276739a5f863ccacb61999a3067d0895ee291c95502929b2ae56ea1f882e888
MD5 f91feb99601785fb2e6661349b696240
BLAKE2b-256 25b6454cf208be93efa3db50ce06b732328c57ede005d1dcfa71d9a1548530b0

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fefba2a43b92f8393366093b60efbe984a72a2b41cce16b4002005e4104ef938
MD5 f9e1c88b465a219efdfa8b10508686f9
BLAKE2b-256 adaf1288e50e80309d9de6b8ffb44c3cc8c754f1283d124ffa4a9940a96f7539

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 75297f3dd6685f01555f1bb75846995d45650af417280b69c81bf11b6987aed5
MD5 95e4651fc05491847058617b133d24fe
BLAKE2b-256 4ead84c2349afcf44d5fb142b00716f67f253020a77621b206f98d2f8e5b974c

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 51d99a08c8bf689cf60c9d8dca6e3d3e5f6d762def85ad735dcea11fb528a89b
MD5 1c3e4c4ec8dbfc4ad4b09dbcab2ec10e
BLAKE2b-256 ebf18ab06a3ae2f047098a953e43e1714f47ae0db28d2960afcacaa04d671b51

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 42cba716db197e0d1670e2fc13c4cc4a86d5c5358120ccfee6ec427b154e74ff
MD5 a8adc73e72c0bde88f336e59bacc3cb6
BLAKE2b-256 c3d7b7c0038d33feb79b106d71b251bb5dbf06b009058a43b0c03e17befbc95d

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 47b4090b7686642e41176becb7c42ef3cc665d7ee0db5e7ea5d307ec9779327e
MD5 86a19b7468bb41f46f260bd66d3e471b
BLAKE2b-256 774e397996d781c98198863478c832f66e8312e6911d8c2de06959f767f26039

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1725540b754a9967778e9385e1ee2c8db50d5ab70ed835c9f5e36002ffabc169
MD5 af2f9520a742c249d31dcad55c642a7e
BLAKE2b-256 dabf05b08c952a73b6e7ab3700c4d2bc2d466bdfa990ef7f2d4d8a5eaa8d6c0b

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c69e5c6051366a6ac9600d730276db939b1a205e42504ec0b8371f154b0058db
MD5 1033af234674cbfd2e71923cf647b74d
BLAKE2b-256 35e2c3c86b1953d617467c426d05207ad2473a470e0150c15b5b8936a8236332

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 42ad71502237c9fe300ecf157f5a394df717789a2dde541dd7034b539c70bdcc
MD5 e15ce54fdab65e8ddb04ba17d80a6f34
BLAKE2b-256 f9c88db4108aba5e2166cd2ea4eafa1a4b82f89240a1fa85733029cc2358ad1f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ad4db28d3dc16c01df75ed6efb72524537de3839a5d179fcf94094359fc72ec5
MD5 bbbea071d4e4f6a60ef22939c875d980
BLAKE2b-256 cfdbd754f807d02458a6a6947d3c86c72a7093b7df616aa409b0c5b109f203d0

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0a718b5ffbd5053fb3f9e1a2e20b7c4f256dd8035e246b907d3117d20bac0260
MD5 9ecc4d0245f8082deef38cd470797e9c
BLAKE2b-256 cfdbf6375ee4b604209d88447bffab074f236d5357a4f6fa38901362311ed18d

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 3e3ce307d7c5c5811658ba8686b24b571a8244eaafe707665ad601f400d5ce98
MD5 9d9c55569346065388d114c367edddae
BLAKE2b-256 32b946431bd1dff91527daecb3e4e8d28993ef3ab357120115a1a3d17b319f37

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 f8329ac2160ad8bbbac6a507374685ceca3f24ca427fa9ee61a501280e1972d9
MD5 7980831a107d1e93c619e7a18e7331d1
BLAKE2b-256 4010040f34e1ee23fbb26d81697fa9f51b2535c8bb2914515673175648bdb964

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f6c7bf8cd4de1640b760b47f4d28deb26dbbf9acbe0194cdff54a898e190d872
MD5 a26690c39a724e13948ec8178d179815
BLAKE2b-256 b6e2a1e254a4a4598588d4fe88b45ab88a226c289ecfd0f6c90474eb6a9ea6b3

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c3d852d49d6c1710089d4513702099fa6f8e1aebfedf222319d80c47b0a195f8
MD5 cc571656d470fe291fc885bd8295b051
BLAKE2b-256 7df0f2c3091cf7d096b6c20f8a71867a55aab6d079c4562712a4ceb8cdeb7fa1

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b3e4681253e95da5aa5c231889a32b084fd997962bf8beda6f796bf422f734b2
MD5 80f7f6fd1c46d4c47a6150941176c538
BLAKE2b-256 b120f13a7a1565b8af66c1e9d7799be9557e40e6cdb541bbf0d014792ab8a69d

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 b3dc88c4d2bcb26ffc5afe16d053ae28317d7d1de083651defcd5453a04f1563
MD5 1487e68430b7e1484a3e1c3f0f997d24
BLAKE2b-256 0e80dc650ba50b7440759884eb1ce08c655f88e9bf85d22cc68367f67504937e

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 9ebb38ab1d0ee143982aed561811903ac6c1abb512ae2b9019b3b65bde63ffb9
MD5 f6ce9467e1c381549629583bebd581e6
BLAKE2b-256 c6824b7f3e10e0924d53606423bf043fbf6dcd4d7e3810f4de5feaed6bec5003

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f1428af5c381f6eef30ffbc7e047b7c713d4efa5d7bf5e57b62b3fc8d387044b
MD5 602c71921ca976ad42819b2ec5d9be57
BLAKE2b-256 cd359eb69f2540882ce90e2776a3b201b6e59f3aae869df0fb11f33c39c59bd6

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c6612e7e43988b8b5e1957150449493a55f9c059de641083df7a964f86f2d1e7
MD5 5e2882007b9dc3f978757c3f39e12f85
BLAKE2b-256 143e00eea1005eecd8da9633778cc4a62f08bd43018721e0f55e3b27762abb4f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 efd842d70b87e3ef3429c3149840b9189d4441ca951ab0cec62c94a964e219d9
MD5 d5cefedeba7b2dc864a84ac46d59fdb8
BLAKE2b-256 75c14cf848208933f5254fca8060f722c88957c2ba47be7bb88ce9fa75bfa4ea

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a402c1484fe65df42d5dbc22a58e0695fe3afe2b0b229aee2a09c6d60ba8e5c2
MD5 ada4f40d1465bc616cf2ed007b5f6f6e
BLAKE2b-256 bc67370aa248f54769a56216707ad7b9af19745e85a603fafa47bde353f327fb

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5f7577fbb2399a4712e96cf0e786638168940a876c33735a1b5d5a86ba4b1370
MD5 2b31bb7a2492e7c48984580106454764
BLAKE2b-256 ee26c033ef145d725513566f8cf9b25e6bdb58e9bae3072a0b93f6fd10b80001

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 ce121baa8e85ec27c3065281657dcd78adaab7dcb046c7fe96ad4e5a9dcb6610
MD5 c37899aeaef465d44ca5d44d4d04b8a0
BLAKE2b-256 b29e8f4db9db8b16712cf7984686ce21ee88c6668c670c327280dd5fcccf5555

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 ed2a9a9bea6ec443b7effe5695c9c168b7bf9a67df6d880729760feda871b6a3
MD5 b441653ffd630ada36081094497ae079
BLAKE2b-256 1579f88871051db5d30e2ae88129802ffa4c3186e7a6ad090b4d2c0c2381cbfd

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 69a34d389d9ca4687ad00af4e11d53686771f484c37366f68617ef656bab16ab
MD5 efedf73b7078aa3a02178fb3e5f76335
BLAKE2b-256 95510b4703a6adc12e865514577eff222509553ce1777dbad7ecb051b478c7ef

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 aad6b9aac1617bd7efa0450643888bbd3410679a94bc8680d9863825686ef369
MD5 004da54f13c1460ea0d46c3e263626ba
BLAKE2b-256 3621065f4323182fef90b8558c6c6c557c0b1bfa08b461f2bccb37ac540f159f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.19.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 66bfc2b6b15db1725d03ea657ec9184ff09dcbf1ecd834ef85f2edc2c9cbba97
MD5 7fbc06726b573f6a92f1940c84f1e8e6
BLAKE2b-256 2247dfc1c815a75afc940789df0e125d55cf9e1eceaf589d89f285f9df575235

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page