Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure Travis Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • SciPy (>= 1.3.2)

  • joblib (>= 1.0.0)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 3.1.2). For running the examples Matplotlib >= 3.1.2 is required. A few examples require scikit-image >= 0.16.2, a few examples require pandas >= 1.0.5, some examples require seaborn >= 0.9.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.0.1 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.1.2.tar.gz (7.0 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.1.2-cp310-cp310-win_amd64.whl (7.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.1.2-cp310-cp310-macosx_12_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.1.2-cp310-cp310-macosx_10_9_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_learn-1.1.2-cp39-cp39-win_amd64.whl (7.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.1.2-cp39-cp39-win32.whl (6.6 MB view details)

Uploaded CPython 3.9 Windows x86

scikit_learn-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.1.2-cp39-cp39-macosx_12_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.1.2-cp39-cp39-macosx_10_9_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scikit_learn-1.1.2-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-1.1.2-cp38-cp38-win32.whl (6.6 MB view details)

Uploaded CPython 3.8 Windows x86

scikit_learn-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scikit_learn-1.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scikit_learn-1.1.2-cp38-cp38-macosx_12_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scikit_learn-1.1.2-cp38-cp38-macosx_10_9_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scikit-learn-1.1.2.tar.gz.

File metadata

  • Download URL: scikit-learn-1.1.2.tar.gz
  • Upload date:
  • Size: 7.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for scikit-learn-1.1.2.tar.gz
Algorithm Hash digest
SHA256 7c22d1305b16f08d57751a4ea36071e2215efb4c09cb79183faa4e8e82a3dbf8
MD5 dcc6f9a72a6730fa2a2c37b17589835c
BLAKE2b-256 10ae123b6d1fdb2fdb1aea6793abe33ed1bf19efd0a936d2f39040a5e99f402b

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bbef6ea1c012ff9f3e6f6e9ca006b8772d8383e177b898091e68fbd9b3f840f9
MD5 ce2c134e0ddebe29fb75aa5621e53455
BLAKE2b-256 d1cf3970ff6ff604393945d0ebae752ea206ea0a48d4bf8ae20351199da1622d

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ec3ea40d467966821843210c02117d82b097b54276fdcfb50f4dfb5c60dbe39
MD5 22e05575bce367387855db9caa139264
BLAKE2b-256 e421a796a49b8705ee6ec70a177954c82b58981d3b49af9de82bc56c4efd26a6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3e7d1fc817867a350133f937aaebcafbc06192517cbdf0cf7e5774ad4d1adb9f
MD5 9f8cfb97baec55059c0693767ec295a0
BLAKE2b-256 f331242ff06d44e7f885d3fd68117546c60adfd5a40b6cd6b729fc3945943b57

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2b8db962360c93554cab7bb3c096c4a24695da394dd4b3c3f13409f409b425bc
MD5 f80a2c540e5caa3132548cebed75e841
BLAKE2b-256 e38f1b6208df4b9bfa1976e0a0d1b74300bc0c725fdea2c124d23c6cd72c5286

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c840f662b5d3377c4ccb8be1fc21bb52cb5d8b8790f8d6bf021739f84e543cf
MD5 0ae7470513018501adc823a021eba029
BLAKE2b-256 1d305cf190ab9b65056e66430553b2029463f9e822e87fa900efe41d644d317e

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 407e9a1cb9e6ba458a539986a9bd25546a757088095b3aab91d465b79a760d37
MD5 c160608db5e1020bef385b9c21750a4e
BLAKE2b-256 45d19dfb055ce2893c309936d01efab048ac8ee89ec7ac006fa1f65ff67edaad

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: scikit_learn-1.1.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for scikit_learn-1.1.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1c8fecb7c9984d9ec2ea48898229f98aad681a0873e0935f2b7f724fbce4a047
MD5 1c7ccddbd176c636cf7d158cb327c685
BLAKE2b-256 c5eea5a1f6463d975bb5681f9059173add6b7541fe95fadc9b4883ba091bcbae

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76800652fb6d6bf527bce36ecc2cc25738b28fe1a17bd294a218fff8e8bd6d50
MD5 9f766cb3dcb856ffc4e54fe6dc578161
BLAKE2b-256 7380a0df6812b29132db32b7712e9b4e8113aa76c5d68147a2e2b5f59042b5ea

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 589d46f28460469f444b898223b13d99db9463e1038dc581ba698111f612264b
MD5 134d7299945ea2ef90f541730f07a451
BLAKE2b-256 154d65dca1e0ff82b89521c3dfc936bb607fe8c06bb876aa65ca70d02518999d

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d6f232779023c3b060b80b5c82e5823723bc424dcac1d1a148aa2492c54d245d
MD5 e2509e17510ab332ea1c7b1008bde952
BLAKE2b-256 3d100148194fe9e9dab17a61c671da84154162f97c940f780f6f72d1d597bde0

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 567417dbbe6a6278399c3e6daf1654414a5a1a4d818d28f251fa7fc28730a1bf
MD5 28fbada620b7448b6a23af8d0deaf72c
BLAKE2b-256 85922c69e856918ff04b42113699e3e788dab3de630708a2f88ae848ed25fe30

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b1e706deca9b2ad87ae27dafd5ac4e8eff01b6db492ed5c12cef4735ec5f21ea
MD5 d523324fd26f200f381d37ba98627b68
BLAKE2b-256 cb0be085436fce6daf49786bf0e1107ade7dcd22eb6110abb44b6eb6f29f9270

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_learn-1.1.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for scikit_learn-1.1.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2f46c6e3ff1054a5ec701646dcfd61d43b8ecac4d416014daed8843cf4c33d4d
MD5 77729bb24b7e9a195b74a44240cb1c90
BLAKE2b-256 dce908af3f94a3d7623fb5ae142b4e3bee69e5429d808bab0f25e17cd217936b

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f94c0146bad51daef919c402a3da8c1c6162619653e1c00c92baa168fda292f2
MD5 3ccc429cbffcf5e60fce29ef20a7b309
BLAKE2b-256 91d150eb92222e8b2f315ec5499b97a926d271305e19e254fdced4db899647d6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c33e16e9a165af6012f5be530ccfbb672e2bc5f9b840238a05eb7f6694304e3f
MD5 6677ef60b4f1f34c597b66fce7ba1acb
BLAKE2b-256 c015682d5282bc1af94e536161d780bd47cd6b4e81ae912c005e20ccc3987578

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a682ec0f82b6f30fb07486daed1c8001b6683cc66b51877644dfc532bece6a18
MD5 109899a05ff1ee4e4d64cebd928d601e
BLAKE2b-256 197e3905f9f88cda468c82f8a6f410d947b4c287c9797ae3af7bf389e92676af

See more details on using hashes here.

File details

Details for the file scikit_learn-1.1.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a90ca42fe8242fd6ff56cda2fecc5fca586a88a24ab602d275d2d0dcc0b928fb
MD5 efd2a43e6e975bfdff871279d5e21912
BLAKE2b-256 d521566dcf45b849df19cee33d0813830abde5665dd066e88bfa8d071a1258af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page